首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a network of coupled chaotic maps for multi-scale image segmentation is proposed. Time evolutions of chaotic maps that correspond to a pixel cluster are synchronized with one another, while this synchronized evolution is desynchronized with respect to time evolution of chaotic maps corresponding to other pixel clusters in the same image. The number of pixel clusters is previously unknown and the adaptive pixel moving technique introduced in the model makes it robust enough to classify ambiguous pixels.  相似文献   

2.
Chaotic regimens have been observed experimentally in neurons as well as in deterministic neuronal models. The R15 bursting cell in the abdominal ganglion of Aplysia has been the subject of extensive mathematical modeling. Previously, the model of Plant and Kim has been shown to exhibit both bursting and beating modes of electrical activity. In this report, we demonstrate (a) that a chaotic regime exists between the bursting and beating modes of the model, and (b) that the model approaches chaos from both modes by a period doubling cascade. The bifurcation parameter employed is the external stimulus current. In addition to the period doubling observed in the model-generated trajectories, a period three "window" was observed, power spectra that demonstrate the approaches to chaos were generated, and the Lyaponov exponents and the fractal dimension of the chaotic attractors were calculated. Chaotic regimes have been observed in several similar models, which suggests that they are a general characteristic of cells that exhibit both bursting and beating modes.  相似文献   

3.
There is a phenomenon of multiregimism found in the elementary mathematical model of population dynamics, meaning the possibility for different dynamic regimes to exist under the same conditions, with transition to these regimes dependent on the initial numerical values. The effect in question comes into existence in the model which has several different limiting regimes (attractors): equilibrium, regular fluctuations, and chaotic attractor. The revealed phenomenon of multiregimism lets us explain the initiation of fluctuations as well as disappearance of fluctuations. Adequacy of the model's dynamic regimes is depicted by their correlation with the actual dynamics of population size of bank vole (Myodes glareolus). It is shown that the impact of climatic factors on a reproductive process of a population noticeably extends the range of possible dynamic regimes and, in fact, leads to random migration over attraction basins of these regimes.  相似文献   

4.
We study the possibility of chaotic dynamics in the externally driven Droop model. This model describes a phytoplankton population in a chemostat under periodic nutrient supply. Previously, it has been proven under very general assumptions, that such systems are not able to exhibit chaotic dynamics. We show that the simple introduction of algal mortality may lead to chaotic oscillations of algal density in the forced chemostat. Our numerical simulations show that the existence of chaos is intimately related to plankton overshooting in the unforced model. We provide a simple measure, based on stability analysis, for estimating the amount of overshooting. These findings are not restricted to the Droop model but also hold for other chemostat models with mortality. Our results suggest periodically driven chemostats as a simple model system for the experimental verification of chaos in ecology.  相似文献   

5.
We investigate the appearance of chaos in a microbial 3-species model motivated by a potentially chaotic real world system (as characterized by positive Lyapunov exponents (Becks et al., Nature 435, 2005). This is the first quantitative model that simulates characteristic population dynamics in the system. A striking feature of the experiment was three consecutive regimes of limit cycles, chaotic dynamics and a fixed point. Our model reproduces this pattern. Numerical simulations of the system reveal the presence of a chaotic attractor in the intermediate parameter window between two regimes of periodic coexistence (stable limit cycles). In particular, this intermediate structure can be explained by competition between the two distinct periodic dynamics. It provides the basis for stable coexistence of all three species: environmental perturbations may result in huge fluctuations in species abundances, however, the system at large tolerates those perturbations in the sense that the population abundances quickly fall back onto the chaotic attractor manifold and the system remains. This mechanism explains how chaos helps the system to persist and stabilize against migration. In discrete populations, fluctuations can push the system towards extinction of one or more species. The chaotic attractor protects the system and extinction times scale exponentially with system size in the same way as with limit cycles or in a stable situation.  相似文献   

6.
A four-component ecosystem model of the oceanic upper mixedlayer (UML) forced by the annual cycle of UML depth, solar irradiationand dissolved inorganic nitrogen (DIN) entrainment from theseasonal pycnocline is presented. The model solution demonstratesthe following types of temporal variability: a periodical regimewith the frequency of the external forcing, a regime with aperiod of more than 1 year, quasi-periodic, and chaotic motion.The model results suggest that the last three types describingthe interannual variability can occur only at low latitudesin regions of strong upwelling where the DIN concentration inthe seasonal pycnocline is high. However, the range of externalforcing parameters in which such behaviour takes place is sonarrow that it is unlikely to be a common phenomenon in theocean. The quasi-periodic or chaotic variability of the modelecosystem is very sensitive to the initial conditions, and thereforeany exact prediction of model behaviour is impossible. Nevertheless,a prediction of model ecosystem behaviour can be obtained interms of a probability density. The annual cycle of the modelcomponents calculated in this way shows that the dispersionof the trajectories during the winter period is markedly smallerthan during the summer. It implies that the dynamics of themodel ecosystem during the summer period is less predictable.  相似文献   

7.
Imamura H  Chen JZ 《Proteins》2007,67(2):459-468
We present a minimal model for proteins, which is able to capture the structural conversion between the alpha-helix and beta-hairpin. In most regimes of the parameter space, the model produces a stable structure at a low temperature; in a few limited regimes of the parameter space, the model displays an beta-hairpin transition as the physical conditions vary. These variations include a perturbation on hydrogen bonding propensity at the middle of the modeled chain, or the change of the hydrophobicity of a designated pair along the chain. Using Monte Carlo simulations, we demonstrate the structural conversion by means of state diagrams, heat capacity maps, and free energy maps.  相似文献   

8.
Sensitivity and flexibility are important properties of biological systems. These properties are here investigated for intracellular calcium oscillations. For a particular model, we comparatively investigate sensitivity and flexibility of regular and chaotic Ca(2+) oscillations. For this model, we obtain two main results. First, sensitivity of the model system to parameter shifting does not depend on the complexity of Ca(2+) oscillations. We observe, however, that both regular and chaotic Ca(2+) oscillations are highly sensitive in regions close to bifurcation points. Second, also flexibility of Ca(2+) oscillations does not significantly depend on the type of Ca(2+) oscillations. Our results show that regular as well as chaotic Ca(2+) oscillations in the studied model are highly flexible in regimes with weak dissipation. Both results are discussed in the sense of possible biological importance.  相似文献   

9.
Although it is known that two coupled Wilson–Cowan models with reciprocal connections induce aperiodic oscillations, little attention has been paid to the dynamical mechanism for such oscillations so far. In this study, we aim to elucidate the fundamental mechanism to induce the aperiodic oscillations in the coupled model. First, aperiodic oscillations observed are investigated for the case when the connections are unidirectional and when the input signal is a periodic oscillation. By the phase portrait analysis, we determine that the aperiodic oscillations are caused by periodically forced state transitions between a stable equilibrium and a stable limit cycle attractors around the saddle-node and saddle separatrix loop bifurcation points. It is revealed that the dynamical mechanism where the state crosses over the saddle-node and saddle separatrix loop bifurcations significantly contributes to the occurrence of chaotic oscillations forced by a periodic input. In addition, this mechanism can also give rise to chaotic oscillations in reciprocally connected Wilson–Cowan models. These results suggest that the dynamic attractor transition underlies chaotic behaviors in two coupled Wilson–Cowan oscillators.  相似文献   

10.
This paper is concerned with the modeling of neural systems regarded as information processing entities. I investigate the various dynamic regimes that are accessible in neural networks considered as nonlinear adaptive dynamic systems. The possibilities of obtaining steady, oscillatory or chaotic regimes are illustrated with different neural network models. Some aspects of the dependence of the dynamic regimes upon the synaptic couplings are examined. I emphasize the role that the various regimes may play to support information processing abilities. I present an example where controlled transient evolutions in a neural network, are used to model the regulation of motor activities by the cerebellar cortex.  相似文献   

11.
A mathematical model is presented for the dynamics of a spatially heterogeneous predator-prey population system; a prototype is the Syamozero lake fish community. We show that the invasion of an intermediate predator can evoke chaotic oscillations in the population densities. We also show that different dynamic regimes (stationary, nonchaotic oscillatory, and chaotic) can coexist. The “choice” of a particular regime depends on the initial invader density. Analysis of the model solutions shows that invasion of an alien species is successful only in the absence of competition between the juvenile invaders and the native species.  相似文献   

12.
We study the role of interactions between habitats in rotifer dynamics. We use a simple discrete-time model to simulate the interactions between neighboring habitats with different intrinsic dynamics. Being uncoupled, one habitat shows periodical oscillations of the rotifer biomass while the other one demonstrates chaotic oscillations. As a result of the exchange of rotifer biomass, chaos replaces regular oscillations. As a result, the rotifer dynamics becomes chaotic in both habitats. We show that the invasion of chaos is followed by the synchronization of the chaotic regimes of both habitats, and this synchronization increases as coupling between the habitats is increased. We also demonstrate that the biological invasion of the rotifer species, which show chaotic dynamics, to a neighboring habitat with intrinsically regular plankton dynamics leads to the invasion of chaos and the synchronization of chaotic oscillations of the plankton biomass in both the habitats.  相似文献   

13.
We have analyzed various types of complex calcium oscillations. The oscillations are explained with a model based on calcium-induced calcium release (CICR). In addition to the endoplasmic reticulum as the main intracellular Ca2+ store, mitochondrial and cytosolic Ca2+ binding proteins are also taken into account. This model was previously proposed for the study of the physiological role of mitochondria and the cytosolic proteins in gene rating complex Ca2+ oscillations [1]. Here, we investigated the occurrence of different types of Ca2+ oscillations obtained by the model, i.e. simple oscillations, bursting, and chaos. In a bifurcation diagram, we have shown that all these various modes of oscillatory behavior are obtained by a change of only one model parameter, which corresponds to the physiological variability of an agonist. Bursting oscillations were studied in more detail because they express birhythmicity, trirhythmicity and chaotic behavior. Two different routes to chaos are observed in the model: in addition to the usual period doubling cascade, we also show intermittency. For the characterization of the chaotic behavior, we made use of return maps and Lyapunov exponents. The potential biological role of chaos in intracellular signaling is discussed.  相似文献   

14.
We explore the effects of stochastic sodium (Na) channel activation on the variability and dynamics of spiking and bursting in a model neuron. The complete model segregates Hodgin-Huxley-type currents into two compartments, and undergoes applied current-dependent bifurcations between regimes of periodic bursting, chaotic bursting, and tonic spiking. Noise is added to simulate variable, finite sizes of the population of Na channels in the fast spiking compartment.During tonic firing, Na channel noise causes variability in interspike intervals (ISIs). The variance, as well as the sensitivity to noise, depend on the model's biophysical complexity. They are smallest in an isolated spiking compartment; increase significantly upon coupling to a passive compartment; and increase again when the second compartment also includes slow-acting currents. In this full model, sufficient noise can convert tonic firing into bursting.During bursting, the actions of Na channel noise are state-dependent. The higher the noise level, the greater the jitter in spike timing within bursts. The noise makes the burst durations of periodic regimes variable, while decreasing burst length duration and variance in a chaotic regime. Na channel noise blurs the sharp transitions of spike time and burst length seen at the bifurcations of the noise-free model. Close to such a bifurcation, the burst behaviors of previously periodic and chaotic regimes become essentially indistinguishable.We discuss biophysical mechanisms, dynamical interpretations and physiological implications. We suggest that noise associated with finite populations of Na channels could evoke very different effects on the intrinsic variability of spiking and bursting discharges, depending on a biological neuron's complexity and applied current-dependent state. We find that simulated channel noise in the model neuron qualitatively replicates the observed variability in burst length and interburst interval in an isolated biological bursting neuron.  相似文献   

15.
 Forced excitable systems arise in a number of biological and physiological applications and have been studied analytically and computationally by numerous authors. Existence and stability of harmonic and subharmonic solutions of a forced piecewise-linear Fitzhugh-Nagumo-like system were studied in Othmer ad Watanabe (1994) and in Xie et al. (1996). The results of those papers were for small and moderate amplitude forcing. In this paper we study the existence of subharmonic solutions of this system under large-amplitude forcing. As in the case of intermediate-amplitude forcing, bistability between 1 : 1 and 2 : 1 solutions is possible for some parameters. In the case of large-amplitude forcing, bistability between 2 : 2 and 2 : 1 solutions, which does not occur in the case of intermediate-amplitude forcing, is also possible for some parameters. We identify several new canonical return maps for a singular system, and we show that chaotic dynamics can occur in some regions of parameter space. We also prove that there is a direct transition from 2 : 2 phase-locking to chaos after the first period-doubling bifurcation, rather than via the infinite sequence of period doublings seen in a smooth quadratic interval map. Coexistence of chaotic dynamics and stable phase-locking can also occur. Received: 6 July 1998 / Revised version: 2 October 1998  相似文献   

16.
In order to overcome the security weakness of the discrete chaotic sequence caused by small Lyapunov exponent and keyspace, a general chaotic construction method by cascading multiple high-dimensional isomorphic maps is presented in this paper. Compared with the original map, the parameter space of the resulting chaotic map is enlarged many times. Moreover, the cascaded system has larger chaotic domain and bigger Lyapunov exponents with proper parameters. In order to evaluate the effectiveness of the presented method, the generalized 3-D Hénon map is utilized as an example to analyze the dynamical behaviors under various cascade modes. Diverse maps are obtained by cascading 3-D Hénon maps with different parameters or different permutations. It is worth noting that some new dynamical behaviors, such as coexisting attractors and hyperchaotic attractors are also discovered in cascaded systems. Finally, an application of image encryption is delivered to demonstrate the excellent performance of the obtained chaotic sequences.  相似文献   

17.
神经起步点自发放电节律及节律转化的分岔规律   总被引:2,自引:1,他引:1  
在神经起步点的实验中观察到了复杂多样的神经放电([Ca^2 ]o)节律模式,如周期簇放电、周期峰放电、混沌簇放电、混沌峰放电以及随机放电节律等。随着细胞外钙离子浓度的降低,神经放电节律从周期l簇放电,经过复杂的分岔过程(包括经倍周期分岔到混沌簇放电、混沌簇放电经激变到混沌峰放电、以及混沌峰放电经逆倍周期分岔到周期峰放电)转化为周期l峰放电。在神经放电理论模型——Chay模型中,调节与实验相关的参数(Ca^2 平衡电位),可以获得与实验相似的神经放电节律和节律转换规律。这表明复杂的神经放电节律之间存在着一定的分岔规律,它们是理解神经元信息编码的基础。  相似文献   

18.
 It is proved that the periodically forced Droop model for phytoplankton growth in a chemostat has precisely two dynamic regimes depending on a threshold condition involving the dilution rate. If the dilution rate is such that the sub-threshold condition holds, the phytoplankton population is washed out of the chemostat. If the super-threshold condition holds, then there is a unique periodic solution, having the same period as the forcing, characterized by the presence of the phytoplankton population, to which all solutions approach asymptotically. Furthermore, this result holds for a general class of models with monotone growth rate and monotone uptake rate, the latter possibly depending on the cell quota. Received 10 October 1995; received in revised form 26 March 1996  相似文献   

19.
A simple mathematical model of living pacemaker neurons is proposed. The model has a unit circle limit cycle and radial isochrons, and the state point moves slowly in one region and fast in the remaining region; regions can correspond to the subthreshold activity and to the action potentials of pacemaker neurons, respectively. The global bifurcation structure when driven by periodic pulse trains was investigated using one-dimensional maps (PTC), two-dimensional bifurcation diagrams, and skeletons involving stimulus period and intensity. The existence of both the slow and the fast dynamics has a critical influence on the global bifurcation structure of the oscillator when stimulated periodically.Supported by Trent H. Wells Jr. Inc.  相似文献   

20.
The numerical study of a glycolytic model formed by a system of three delay differential equations reveals a multiplicity of stable coexisting states: birhythmicity, trirhythmicity, hard excitation and quasiperiodic with chaotic regimes. For different initial functions in the phase space one may observe the coexistence of two different quasiperiodic motions, the existence of a stable steady state with a stable torus, and the existence of a strange attractor with different stable regimes (chaos with torus, chaos with bursting motion, and chaos with different periodic regimes). For a single range of the control parameter values our system may exhibit different bifurcation diagrams: in one case a Feigenbaum route to chaos coexists with a finite number of successive periodic bifurcations, in other conditions it is possible to observe the coexistence of two quasiperiodicity routes to chaos. These studies were obtained both at constant input flux and under forcing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号