首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide (LPS)-induced vascular endothelial cell (VEC) dysfunction is an important contributing factor in vascular diseases. Recently, we found that LPS impaired VEC by inducing autophagy. Our previous researches showed that a butyrolactone derivative, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) selectively protected VEC function. The objective of the present study is to investigate whether and how 3BDO inhibits LPS-induced VEC autophagic injury. Our results showed that LPS induced autophagy and led to increase of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP) in Human umbilical vein vascular endothelial cells (HUVECs). Furthermore, LPS significantly increased p8 and p53 protein levels and the nuclear translocation of p53. All of these effects of LPS on HUVECs were strongly inhibited by 3BDO. Importantly, the ROS scavenger N-acetylcysteine (NAC) could inhibited LPS-induced autophagy and knockdown of p8 by RNA interference inhibited the autophagy, p53 protein level increase, the translocation of p53 into nuclei and the ROS level increase induced by LPS in HUVECs. The data suggested that 3BDO inhibited LPS-induced autophagy in HUVECs through inhibiting the ROS overproduction, the increase of p8 and p53 expression and the nuclear translocation of p53. Our findings provide a potential tool for understanding the mechanism underlying LPS-induced autophagy in HUVECs and open the door to a novel therapeutic drug for LPS-induced vascular diseases.  相似文献   

2.
Fatty acids are known as modulators of the vasoactive properties of the vessel wall and can influence the physical and functional properties of cell membrane. The membrane-bound enzyme Na,K-ATPase plays a central role in endothelial function such as vasoconstriction. In a previous study, we have shown that omega3 fatty acids inhibited Na,K-ATPase activity in human endothelial cells. As Mediterranean diet is known to protect from cardiovascular diseases, we have investigated the effects of Omegacoeur, a Mediterranean nutritional complement consisting of omega3, omega6, omega9 fatty acids, garlic and basil, on Na,K-ATPase activity in human endothelial cells (HUVECs). Cells were incubated for 18 hr with pure lecithin liposomes or Omegacoeur-enriched emulsions (4 mg lecithin/ml). Na,K-ATPase and 5'-nucleotidase activities were determined using coupled assay methods on microsomal fractions obtained from HUVECs. Cell fatty acid composition was evaluated by gas chromatography after extraction of lipids and fatty acids methylation. The results showed that Omegacoeur (0.1 mM) increased Na,K-ATPase activity by 40% without changes in 5'-nucleotidase activity. Cells incubated with Omegacoeur preferentially incorporated linoleic acid. Therefore, linoleic acid or others constituents of Omegacoeur could be responsible of the stimulation of the Na,K-ATPase activity that might be related to changes in endothelial membrane fluidity.  相似文献   

3.
Our original attempt was to examine whether inhibition of Na/H exchange in proximal tubule would affect the expression of basolateral membrane protein Na,K-ATPase. Three amiloride analogues were tested within the range of 10(-6) M to 10(-4) M in primary cultures of proximal tubule cells. Only ethylisopropyl amiloride (EIPA) dose-dependently downregulated Na,K-ATPase activity in cultured proximal tubule cells. The time course study revealed that EIPA (10(-4) M) significantly decreased Na,K-ATPase alpha- and alpha-mRNA abundance within 4 hr and suppressed Na,K-ATPase alpha- and beta-mRNA levels by 76.3 +/- 4.5% and 85.5 +/- 5.8%, respectively, within 24 hr. The decrease in Na,K-ATPase mRNA was followed by a decrease in Na,K-ATPase activity by 22.5 +/- 10.8% and 48.8 +/- 5.9% within 12 and 24 hr, respectively, which could be reflected by a coordinate decrease in levels of both alpha- and mature beta-protein. The cell viability was not affected until 20 hr of EIPA treatment, when an increase in LDH release and cell detachment was observed. Because EIPA rapidly decreased intracellular pH (pHi) to 6.7 within 2 hr and raising pHi to 6.6 by metabolic acidosis could not elicit changes in Na,K-ATPase activity, EIPA-induced downregulation of Na,K-ATPase should not be mediated through H+. In view of the time course of EIPA effects on Na,K-ATPase subunit mRNA, protein, activity and cell toxicity, the cytotoxic effect is likely resulted from a decrease in Na,K-ATPase activity. Take together, we conclude that EIPA induces downregulation of Na,K-ATPase expression via both pre- and post-translational mechanisms, which confers cytotoxic effects on proximal tubule cells.  相似文献   

4.
The migration and proliferation of vascular smooth muscle cells (VSMCs) are essential elements during the development of atherosclerosis and restenosis. An increasing number of studies have reported that extracellular matrix (ECM) proteins, including the CCN protein family, play a significant role in VSMC migration and proliferation. CCN4 is a member of the CCN protein family, which controls cell development and survival in multiple systems of the body. Here, we sought to determine whether CCN4 is involved in VSMC migration and proliferation. We examined the effect of CCN4 using rat cultured VSMCs. In cultured VSMCs, CCN4 stimulated the adhesion and migration of VSMCs in a dose-dependent manner, and this effect was blocked by an antibody for integrin α5β1. CCN4 expression was enhanced by the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). Furthermore, knockdown of CCN4 by siRNA significantly inhibited the VSMC proliferation. CCN4 also could up-regulate the expression level of marker proteins of the VSMCs phenotype. Taken together, these results suggest that CCN4 is involved in the migration and proliferation of VSMCs. Inhibition of CCN4 may provide a promising strategy for the prevention of restenosis after vascular interventions.  相似文献   

5.
Angiogenesis plays an important role in tumor progression. Piperine, a major alkaloid constituent of black pepper, has diverse physiological actions including killing of cancer cells; however, the effect of piperine on angiogenesis is not known. Here we show that piperine inhibited the proliferation and G1/S transition of human umbilical vein endothelial cells (HUVECs) without causing cell death. Piperine also inhibited HUVEC migration and tubule formation in vitro, as well as collagen-induced angiogenic activity by rat aorta explants and breast cancer cell-induced angiogenesis in chick embryos. Although piperine binds to and activates the cation channel transient receptor potential vanilloid 1 (TRPV1), its effects on endothelial cells did not involve TRPV1 since the antiproliferative effect of piperine was not affected by TRPV1-selective antagonists, nor did HUVECs express detectable TRPV1 mRNA. Importantly, piperine inhibited phosphorylation of Ser 473 and Thr 308 residues of Akt (protein kinase B), which is a key regulator of endothelial cell function and angiogenesis. Consistent with Akt inhibition as the basis of piperine's action on HUVECs, inhibition of the phosphoinositide-3 kinase/Akt signaling pathway with LY-294002 also inhibited HUVEC proliferation and collagen-induced angiogenesis. Taken together, these data support the further investigation of piperine as an angiogenesis inhibitor for use in cancer treatment.  相似文献   

6.
The excessive proliferation and migration of vascular smooth muscle cells (VSMCs) are mainly responsible for vascular occlusion diseases, such as pulmonary arterial hypertension and restenosis. Our previous study demonstrated thymoquinone (TQ) attenuated monocrotaline‐induced pulmonary arterial hypertension. The aim of the present study is to systematically examine inhibitory effects of TQ on platelet‐derived growth factor‐BB (PDGF‐BB)–induced proliferation and migration of VSMCs in vitro and neointimal formation in vivo and elucidate the potential mechanisms. Vascular smooth muscle cells were isolated from the aorta in rats. Cell viability and proliferation were measured in VSMCs using the MTT assay. Cell migration was detected by wound healing assay and Transwell assay. Alpha‐smooth muscle actin (α‐SMA) and Ki‐67‐positive cells were examined by immunofluorescence staining. Reactive oxygen species (ROS) generation and apoptosis were measured by flow cytometry and terminal deoxyribonucleotide transferase–mediated dUTP nick end labelling (TUNEL) staining, respectively. Molecules including the mitochondria‐dependent apoptosis factors, matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), PTEN/AKT and mitogen‐activated protein kinases (MAPKs) were determined by Western blot. Neointimal formation was induced by ligation in male Sprague Dawley rats and evaluated by HE staining. Thymoquinone inhibited PDGF‐BB–induced VSMC proliferation and the increase in α‐SMA and Ki‐67‐positive cells. Thymoquinone also induced apoptosis via mitochondria‐dependent apoptosis pathway and p38MAPK. Thymoquinone blocked VSMC migration by inhibiting MMP2. Finally, TQ reversed neointimal formation induced by ligation in rats. Thus, TQ is a potential candidate for the prevention and treatment of occlusive vascular diseases.  相似文献   

7.
重组福安泰-03抑制人脐静脉血管内皮细胞的迁移和增殖   总被引:1,自引:0,他引:1  
研究重组福安泰-03(recombinant Fuantai-03,rFAT-03)对人脐静脉血管内皮细胞(human umbilical vein endothelial cells,HUVECs)迁移和增殖的影响.聚碳酸酯膜小室趋化运动模型(transwell model)检测rFAT-03对HUVECs迁移能力的影响;MTT法检测rFAT-03对HUVECs和多种人癌细胞生长的影响;荧光显微镜观察rFAT-03作用下HUVECs的形态变化;膜联蛋白V-异硫氰酸荧光素(annexin V-fluorescein isothiocyanate,annexinV-FITC)双染检测rFAT-03对HUVECs早期凋亡的影响;流式细胞术分析rFAT-03对HUVECs周期及凋亡的影响;Western印迹检查rFAT-03对HUVECs血管内皮细胞生长因子(VEGF)、Bax和Bcl-2表达的影响.结果显示,rFAT-03明显抑制HUVECs细胞的迁移和增殖,其抑制效果与剂量和作用时间相关.0.20mg/mL恩度(endostar),0.10、0.20mg/mLrFAT-03作用HUVECs24h,对细胞迁移的抑制率分别为32.0%、32.6%、57.1%(P0.01).0.20mg/mL恩度,0.05、0.10、0.20mg/mLrFAT-03作用HUVECs72h,其对细胞生长的抑制率分别为40.9%、63.7%、69.3%、87.0%.但rFAT-03对多种人癌细胞株的生长却无明显影响.rFAT-03处理HUVECs24h,细胞的早期凋亡率增加(P0.05).rFAT-03阻滞HUVECs于G0/G1期,并呈现典型的凋亡峰.终浓度为0.05、0.10、0.20mg/mLrFAT-03作用于HUVECs24h,G0/G1期细胞指数分别为63.4%、67.5%和75.7%(对照组为62.1%),凋亡指数分别为4.2%、8.5%和10.3%.rFAT-03下调HUVECs的VEGF和抑调亡基因Bcl-2的表达,上调促凋亡基因Bax的表达,其效果与剂量相关.结果提示,rFAT-03明显抑制HUVECs细胞的迁移和增殖,诱导其凋亡,它的这些作用与其下调VEGF、Bcl-2表达,上调Bax表达密切相关.  相似文献   

8.
Tumor angiogenesis is a complicated process based upon a sequence of interactions between tumor and vessel endothelial cells. Tumor conditioned medium has been widely used to stimulate endothelial cells in vitro angiogenesis. This work was aimed to investigate the effects of gold nanoparticles (GNPs) on angiogenesis in hepatic carcinoma-conditioned endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured with conditioned medium (CM) from the human hepatocarcinoma cell line HepG2 (HepG2-CM), and then treated with different concentrations of GNPs. The effects of GNPs on the viability, migration and active VEGF level of HUVECs were investigated by MTT assay, wound healing assay and transwell chamber assay, and ELISA assay, respectively. The data showed that GNPs significantly inhibited HUVECs proliferation and migration induced by HepG2-CM, and also reduced the levels of active VEGF in the co-culture system. Then, the alterations in morphology and ultrastructure of HUVECs detected by atomic force microscopy (AFM) showed that there appeared obvious pseudopodia, larger membrane particle sizes and much rougher surface in HUVECs after HepG2-CM treatment, which were all reversed after GNPs treatment. Changes in cytoskeleton of HUVECs determined by immunocytochemistry demonstrated that GNPs treatment remarkably inhibited the activation effect of HepG2-CM on HUVECs, which was associated with the disruption of actin filaments induced by GNPs. This study indicates that GNPs can significantly inhibit HepG2-CM activated endothelial cell proliferation and migration through down-regulation of VEGF activity and disruption of cell morphology, revealing the potential applications of GNPs as antiangiogenic agent for the treatment of hepatic carcinoma.  相似文献   

9.
Gangliosides are sialic acid-containing glycosphingolipids that have long been associated with tumor malignancy and metastasis. Mounting evidence suggests that gangliosides also modulate tumor angiogenesis. Tumor cells shed gangliosides into the microenvironment, which produces both autocrine and paracrine effects on tumor cells and tumor-associated host cells. In this study, we show that the simple monosialoganglioside GM3 counteracts the proangiogenic effects of vascular endothelial growth factor (VEGF) and of the complex disialoganglioside GD1a. GM3 suppressed the action of VEGF and GD1a on the proliferation of human umbilical vein endothelial cells (HUVECs) and inhibited the migration of HUVECs toward VEGF as a chemoattractant. Enrichment of added GM3 in the HUVEC membrane also reduced the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2) and downstream Akt. Moreover, GM3 reduced the proangiogenic effects of GD1a and growth factors in the in vivo Matrigel plug assay. Inhibition of GM3 biosynthesis with the glucosyl transferase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), increased HUVEC proliferation and the phosphorylation of VEGFR-2 and Akt. The effects of NB-DNJ on HUVECs were reversed with the addition of GM3. We conclude that GM3 has antiangiogenic action and may possess therapeutic potential for reducing tumor angiogenesis.  相似文献   

10.
Specific binding of radiolabeled inhibitor was employed to localize the Na-pump sites (Na,K-ATPase) in rectal gland epithelium, a NaCl-secreting osmoregulatory tissue which is particularly rich in pump sites. Slices of gland tissue from spiny dogfish were incubated in suitable [3H]ouabain-containing media and then prepared for Na,K-ATPase assay, measurement of radiolabel binding, or quantitative freeze-dry autoradiography at the light microscope level. Gross freezing or drying artifacts were excluded by comparison with additional aldehyde-fixed slices. Characterization experiments demonstrated high-affinity binding which correlated with Na,K-ATPase inhibition and half-saturated at approximately 5 microM [3H]ouabain. At this concentration, the normal half-loading time was approximately 1 h and low-affinity binding to nonspecific sites was negligible. Autoradiographs from both 1- and 4-h incubated slices showed approximately 85% of the bound [3H]ouabain to be localized within a 1-micrometer wide boundary region where the highly infolded basal-lateral cell membrane are closest to the mitochondria. These results establish that most of the enormous Na,K-ATPase activity associated with rectal gland epithelium is in the basal-lateral cell membrane facing interstitial fluid and not in the luminal membrane facing secreted fluid. Moreover, distribution along the basal-lateral membrane appears to be nonuniform with a higher density of enzyme sites close to mitochondria.  相似文献   

11.
The proliferation and migration of vascular smooth muscle cells (VSMCs) are important factors in the occurrence of cardiovascular diseases, such as blood flow abnormalities, stroke and atherosclerosis. Evening primrose, known as Oenothera biennis, is a plant native to Korea that exerts physiological activities, such as antioxidant effects, the inhibition of lipid accumulation and the prevention of muscle atrophy. However, the function of evening primrose stem (EVP) in the regulation of VSMC proliferation and migration and the underlying mechanisms have not been identified. In this study, the effect of EVP on the platelet-derived growth factor (PDGF)-induced proliferation and migration of VSMCs was investigated. The results show that PDGF-BB-induced proliferation of VSMCs was inhibited by EVP at concentrations of 25, 50 or 100 μg/mL in a concentration-dependent manner, and a migration assay showed that EVP inhibited cell migration. Cell cycle analysis was performed to confirm the mechanism by which cell proliferation and migration was inhibited. The results indicate that proteins involved in the cell cycle, such as cyclin, CDK and phosphorylated Rb, were downregulated by EVP at concentrations of 100 μg/mL, thereby increasing the proportion of cells in the G0/G1 phase and inhibiting cell cycle progression. In the PDGF receptor (PDGFR) signaling pathway, phosphorylation of the PDGFR was inhibited by EVP at concentrations of 100 μg/mL, and PLCγ phosphorylation was also decreased. The PDGF-BB-induced effect of EVP on the proliferation of VSMCs involved the inhibition of Akt phosphorylation and the reduction in the phosphorylation of MAPK proteins such as ERK, P38 and JNK. In conclusion, the results demonstrate that EVP inhibited PDGF-BB-induced VSMC proliferation and migration by regulating cell-cycle-related proteins.  相似文献   

12.
Although the antiangiogenic activity of indirubin‐3‐monoxime (I3M), a derivative of a Chinese anti‐leukemia medicine, has been demonstrated using transgenic zebrafish, the detail molecular mechanism has not been elicited. To further establish its role in antiangiogenic activity, we tested its potential against human umbilical vein endothelial cells (HUVECs) and the in vivo Matrigel plug model was applied to evaluate new vessel formation. We also investigated the molecular mechanisms of I3M‐induced antiangiogenic effects in HUVECs. We found that I3M significantly inhibited HUVEC proliferation (2.5–20 µM), migration (2.5–20 µM), and tube formation (10–20 µM) in HUVECs. The number of microvessels growing from the aortic rings was suppressed by I3M treatment. Moreover, I3M suppressed neovascularization in Matrigel plugs in mice. The underlying antiangiogenic mechanism of I3M was correlated with down‐regulation of the vascular endothelial growth factor receptor‐2 activation, at least a part. These findings emphasize the potential use of I3M in pathological situations involving stimulated angiogenesis, such as tumor development. J. Cell. Biochem. 112: 1384–1391, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Chondromodulin-I (ChM-I) is a cartilage-derived angiogenesis inhibitor that has been identified as inhibitory to the growth activity of vascular endothelial cells. In our present study, we demonstrate the anti-angiogenic activity of recombinant human ChM-I (rhChM-I) in mouse corneal angiogenesis and examine its action. We focus on the VEGF-A-induced migration of vascular endothelial cells, a critical regulatory step in angiogenesis. In a modified Boyden chamber assay, nanomolar concentrations of rhChM-I inhibited the chemotactic migration of human umbilical vein endothelial cells (HUVECs) induced by VEGF-A as well as by FGF-2 and IGF-I. The ChM-I action was found to be endothelial cell-specific and independent of cell adhesions. Time-lapse analysis further revealed that rhChM-I markedly reduces VEGF-A-stimulated motility of HUVECs and causes frequent alterations of the moving front due to the appearance of multiple transient protrusions. This action involved the inhibition of cell spreading and the disrupted reorganization of the actin cytoskeleton upon VEGF-A stimulation. Consistent with these observations, rhChM-I was found to significantly reduce the activity of Rac1/Cdc42 during cell spreading, and the VEGF-A-induced Rac1 activity but not its basal activity in quiescent cells. Taken together, our present data suggest that ChM-I impairs the VEGF-A-stimulated motility of endothelial cells by destabilizing lamellipodial extensions.  相似文献   

14.
Critical to epithelial cell viability is the homeostasis of cell volume and composition during changes in transcellular transport. In this study, two previously developed mathematical models (principal cell of the collecting duct and proximal tubule cell) are approximated by their linearizations about a reference condition. This yields matrices which estimate cell volume, cell composition, and transcellular fluxes in response to perturbations of bath conditions and membrane transporter activity. These approximations are themselves extended with the inclusion of linear dependence of membrane transport coefficients on cell variables (e.g., volume, solute concentrations, or electrical potential). This provides cell models with variable permeabilities, which may be homeostatic, and which can be examined systematically: sequentially testing each membrane permeability and its controlling cell variable. In the proximal tubule approximation, volume-mediated increases in peritubular K—Cl or Na—3HCO3 cotransport, and volume-mediated decreases in Na,K-ATPase activity are homeostatic; modulation of peritubular K permeability has little impact. In the principal cell model, volume homeostasis is afforded by volume-sensitive peritubular Na/H exchange or Cl conductance. Predictions from the linear analysis are confirmed in the full models. This approach yields a systematic examination of homeostasis in an epithelial model, and identifies candidate control parameters.  相似文献   

15.
L-苯丙氨酸与血管平滑肌细胞增殖   总被引:3,自引:0,他引:3  
Gao PJ  Zhu DL  Zhan YM  Stepien O  Marche P  Zhao GS 《生理学报》1998,50(4):401-408
本文用氚标胸腺嘧啶核苷掺入DNA合成法测定自发性高血压大鼠(SHR)与正常对照鼠的培养主动脉血管平滑肌细胞(VSMC)增殖,观察L-苯丙氨酸对细胞增殖、细胞生长及原癌基因c-fos、c-myc表达的影响。结果显示:(1)L-苯丙氨酸剂量依赖性地抑制血清、碱性成纤维细胞生长因子及凝血酶诱导的DNA合成;(2)L-苯丙氨酸剂量依赖性地抑制细胞对血清的增殖反应;(3)L-苯丙氨酸抑制血清诱导的c-fos  相似文献   

16.
Woolcock K  Specht SC 《Life sciences》2006,78(15):1653-1661
Adenylyl cyclase is activated by prostaglandin E and inhibited by mu-opioids. Since cAMP-related events influence the activity of the Na Pump and its biochemical correlate Na,K-ATPase in many systems, we tested the hypothesis that prostaglandin E1 and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), a mu-opioid agonist, have opposing actions on Na,K-ATPase activity. Studies were conducted with alamethicin-permeabilized SH-SY5Y human neuroblastoma cells. Prostaglandin E1 (1 microM) transiently inhibited Na,K-ATPase activity for 10-15 min. A direct activator of protein kinase A, 8-Br-cAMP (150 and 500 microM), also inhibited, but more rapidly and for a shorter duration. Both DAMGO (1 microM) and Rp-adenosine 3',5'-cyclic monophosphorothioate (500 microM), a protein kinase A-inhibitor, reversed the inhibitory effect of prostaglandin E1. DAMGO alone (1 microM) stimulated Na,K-ATPase activity up to nearly three-fold control activity. The stimulatory action of DAMGO was blocked by cyclosporine A (2 microM), an inhibitor of calcineurin, and was dependent on Ca2+ entry through nifedipine-sensitive Ca2+ channels. In the presence of 1 mM EGTA, DAMGO inhibited Na,K-ATPase activity. DAMGO-induced inhibition was blocked by the inositol 1,4,5-trisphosphate receptor antagonist xestospongin C (1 microM). Na,K-ATPase is poised to modulate neuronal excitability through its roles in maintaining the membrane potential and transmembrane ion gradients. The differential effects of prostaglandin E1 and opioids on Na,K-ATPase activity may be related to their actions in hyperalgesia.  相似文献   

17.
Phenotypic switching of vascular smooth muscle cells (VSMCs) is known to play a key role in the development of atherosclerosis. However, the mechanisms that mediate VSMC phenotypic switching are unclear. We report here that TIPE2, the tumor necrosis factor (TNF) α-induced protein 8-like 2 (TNFAIP8L2), plays an atheroprotective role by regulating phenotypic switching of VSMCs in response to oxidized low-density lipoprotein (ox-LDL) stimuli. TIPE2-deficient VSMCs treated with ox-LDL expressed lower levels of contractile proteins such as SMαA, SM-MHC and calponin, whereas the proliferation, migration and the synthetic capacity for growth factors and cytokines were increased remarkably. Furthermore, TIPE2 inhibited VSMCs proliferation by preventing G1/S phase transition. Interestingly, these effects of TIPE2 on VSMCs were dependent on P38 and ERK1/2 kinase signals. As a result, neointima formation was accelerated in the carotid arteries of TIPE2-deficient mice. These results indicate that TIPE2 is a potential inhibitor of atherosclerosis.  相似文献   

18.
Yang D  Fu XD  Li YY  Tan Z  Wang TH  Pan JY 《生理学报》2003,55(6):684-691
利用大鼠血管平滑肌细胞(vascular smooth muscle cells,VSMC)作为模型,观察17β-雌二醇(17β-estradiol,E2)对VSMC诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)活性和蛋白表达的影响,并探讨其在内皮素-1(endothlin 1,ET-1)刺激的VSMC周期循环中的作用。检测指标包括同位素法测定iNOS的活性,免疫印迹法(western blot)检测iNOS蛋白表达,流式细胞仪检测细胞周期,观察一氧化氮合酶(nitric oxide synthase,NOS)抑制剂N^G-硝基左旋精氨酸甲酯(N^G-nitro—L—arginine methylester,L—NAME)对E2抑制VSMC细胞周期的影响。结果显示,E2明显增加iNOS的活性和蛋白表达,在30min和12h时能诱导VSMC的iNOS活性明显增加,而60min和24h时VSMC的iNOS活性与对照组无显著差异,不呈明显浓度依赖性,雌激素受体(estrogen receptor,ER)拮抗剂Tamoxifen和L—NAME能明显抑制E2诱导的VSMC iNOS活性增加;E2增加VSMC的iNOS蛋白表达的作用在3h时起效,12h达高峰,以后逐渐下降,呈浓度依赖性,Tamoxifen能明显抑制马诱导的VSMC iNOS蛋白表达;E2明显抑制ET-1诱导的S期细胞百分比和G2 S/G1增加,使VSMC在G1期发生细胞周期阻滞,这些作用可被预先给予L—NAME所明显减轻。上述结果提示,E2使ET—l刺激的VSMC细胞周期循环在G1期发生阻滞与增加VSMC iNOS活性有关,该作用至少部分通过ER介导。  相似文献   

19.
The effects of ethoxy-erianin phosphate (EBTP) on cell proliferation, mitotic cell arrest, migration, infiltration, and endothelial tubular structures were evaluated in this study. The antiproliferative activity of EBTP and combretastatin A-4P (CA4P) was analyzed on several tumor cells (including MCF-7, HeLa, 2LL, and 2LL-IDO) and on an endothelial cell (human umbilical vein endothelial cells [HUVECs]) as well as a human normal liver cell (L02). The results showed that EBTP possessed antiproliferative activity in the micromole range and was relatively less toxic than CA4P. Treating HUVECs with EBTP caused cell accumulation in the G2/M phase, and wound-healing assays indicated that EBTP inhibited cell migration. Furthermore, EBTP and CA4P destroyed the vasculature in endothelial cells and showed vascular disrupting activity of the chorioallantoic membrane in fertilized chicken eggs. In addition, we found that EBTP suppressed the expression of indoleamine 2,3-dioxygenase (IDO) and significantly inhibited IDO-induced migration and infiltration of 2LL-IDO cells. Administration of EBTP blocked vasculogenic mimicry in 2LL-IDO cells, which was typically observed in tube formation assays of 2LL-IDO cells. Moreover, the results of Lewis lung carcinoma in mice showed a high inhibition rate of EBTP. EBTP is an effective vascular disrupting agent that is superior to CA4P and may prevent and treat malignancy by inhibiting the expression of IDO.  相似文献   

20.
Angiogenesis is an innovative target in the therapy of cancer and other diseases, but the effects of anti‐angiogenic drugs have been rather modest in clinical trials. We have developed a small peptide, recombinant vascular basement membrane derived multifunctional peptide (rVBMDMP), which significantly inhibits endothelial cells in vitro. Here we test the mechanisms of rVBMDMP in angiogenesis balance in assays of tubule formation, colony formation, and apoptosis in HUVE‐12 endothelial cells. We also analyzed the differential expression of phosphorylation proteins and related genes in a protein phosphorylation chip and extracellular matrix adhesion molecule cDNA microarray, and validated changes with Western blot or real‐time quantitative PCR, respectively. rVBMDMP dose‐dependently inhibited colony formation, induced apoptosis, and inhibited in vitro tubule formation. rVBMDMP increased the phosphorylation of 88 signal proteins, including caspase‐3, death receptor 3, 4, and 5, and integrin αV, β1, and β3, and down‐regulated 41 signal proteins, including EGFR, pEGFR, VEGFR‐1, and survivin versus control. rVBMDMP upregulated 14 genes, including collagen 4, 7, and 27, and down‐regulated 21 genes, including integrin αVβ3, MMP10, and MMP12. Our study suggests that rVBMDMP inhibits angiogenesis and may be a viable drug candidate in anti‐angiogenesis and anticancer therapies. J. Cell. Biochem. 111: 453–460, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号