首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fine structure study of spermatids and spermatozoa of the spider, Pisaurina sp. demonstrates that early spermiogenesis is similar to other flagellate spermatozoa. An acrosome forms from a Golgi-derived, acrosomal vesicle, a perforatorium indents acromosome and nucleus, a flagellum with a three-plus-nine tubule substructure is formed and nuclear chromatin condenses during spermiogenesis. Divergence from typical spermatozoa includes the presence of a three-tubule substructure of the central flagellar shaft, progressive rounding-up of late spermatids with concomitant incorporation of previously formed flagellum. This evidence is presented in terms of its possible functional significance in fertilization and gamete fusion in spiders.  相似文献   

2.
3.
4.
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs that are translationally dormant or masked until meiotic maturation. Activation of the oocyte by fertilization leads to translational activation of the abundant cyclin and ribonucleotide reductase mRNAs at a time when they undergo cytoplasmic polyadenylation. In vitro unmasking assays have defined U-rich regions located approximately centrally in the 3' UTRs of these mRNAs as translational masking elements. A clam oocyte protein of 82 kDa, p82, which selectively binds the masking elements, has been proposed to act as a translational repressor. Importantly, mRNA-specific unmasking in vitro occurs in the absence of poly(A) extension. Here we show that clam p82 is related to Xenopus CPEB, an RNA-binding protein that interacts with the U-rich cytoplasmic polyadenylation elements (CPEs) of maternal mRNAs and promotes their polyadenylation. Cloned clam p82/CPEB shows extensive homology to Xenopus CPEB and related polypeptides from mouse, goldfish, Drosophila and Caenorhabditis elegans, particularly in their RNA-binding C-terminal halves. Two short N-terminal islands of sequence, of unknown function, are common to vertebrate CPEBs and clam p82. p82 undergoes rapid phosphorylation either directly or indirectly by cdc2 kinase after fertilization in meiotically maturing clam oocytes, prior to its degradation during the first cell cleavage. Phosphorylation precedes and, according to inhibitor studies, may be required for translational activation of maternal mRNA. These data suggest that clam p82 may be a functional homolog of Xenopus CPEB.  相似文献   

5.
Early development in Xenopus laevis is programmed in part by maternally inherited mRNAs that are synthesized and stored in the growing oocyte. During oocyte maturation, several of these messages are translationally activated by poly(A) elongation, which in turn is regulated by two cis elements in the 3' untranslated region, the hexanucleotide AAUAAA and a cytoplasmic polyadenylation element (CPE) consisting of UUUUUAU or similar sequence. In the early embryo, a different set of maternal mRNAs is translationally activated. We have shown previously that one of these, C12, requires a CPE consisting of at least 12 uridine residues, in addition to the hexanucleotide, for its cytoplasmic polyadenylation and subsequent translation (R. Simon, J.-P. Tassan, and J.D. Richter, Genes Dev. 6:2580-2591, 1992). To assess whether this embryonic CPE functions in other maternal mRNAs, we have chosen Cl1 RNA, which is known to be polyadenylated during early embryogenesis (J. Paris, B. Osborne, A. Couturier, R. LeGuellec, and M. Philippe, Gene 72:169-176, 1988). Wild-type as well as mutated versions of Cl1 RNA were injected into fertilized eggs and were analyzed for cytoplasmic polyadenylation at times up to the gastrula stage. This RNA also required a poly(U) CPE for cytoplasmic polyadenylation in embryos, but in this case the CPE consisted of 18 uridine residues. In addition, the timing and extent of cytoplasmic poly(A) elongation during early embryogenesis were dependent upon the distance between the CPE and the hexanucleotide. Further, as was the case with Cl2 RNA, Cl1 RNA contains a large masking element that prevents premature cytoplasmic polyadenylation during oocyte maturation. To examine the factors that may be involved in the cytoplasmic polyadenylation of both C12 and C11 RNAs, we performed UV cross-linking experiments in egg extracts. Two proteins with sizes of ~36 and ~45 kDa interacted specifically with the CPEs of both RNAs, although they bound preferentially to the C12 CPE. The role that these proteins might play in cytoplasmic polyadenylation is discussed.  相似文献   

6.
7.
Mature unfertilized eggs of the sea urchin Lytechinus pictus contain multiple alpha-tubulin mRNAs, which range in size from 1.75 to 4.8 kb, and two beta-tubulin mRNAs, 1.8 and 2.25 kb. These mRNAs were found at similar levels throughout the early cleavage stages. RNA gel blot hybridizations showed that prominent quantitative and qualitative changes in tubulin mRNAs occurred between the early blastula and hatched blastula stages. The overall amounts of alpha- and beta-tubulin mRNAs increased two- to fivefold between blastula and pluteus. These increases were due mainly to a rise in a 1.75-kb alpha RNA and a new 2.0-kb beta RNA. Other, minor changes also occurred during subsequent development. All size classes of alpha- and beta-tubulin RNAs in early and late embryos contained poly(A)+ translatable sequences. As reported earlier, some of each of the alpha RNAs, but neither of the beta RNAs, are translated in the egg and a small portion of each of the stored alpha and beta RNAs is recruited onto polysomes within 30 min of fertilization. In the work described here, subsequent development up to the morula stage was accompanied by a gradual recruitment of tubulin mRNAs into polysomes. By the early blastula stage, most of the maternal tubulin sequences were associated with polysomes. In contrast to the gradual recruitment of maternal sequences throughout cleavage, the tubulin mRNAs which appeared at the blastula stage showed no delay in entering polysomes. The exact fraction of each mRNA that was translationally active at later stages varied somewhat among the individual mRNAs. From the differential hybridization patterns of egg, embryo, and testis RNAs to various tubulin cDNA and genomic DNA probes, it is concluded that at least one gene producing maternal alpha mRNA is different from a second one which is expressed only in testis. Each of the three embryonic beta RNAs is encoded by a different beta gene; at least two of these different beta genes are also expressed in testis.  相似文献   

8.
9.
Fertilization in mammals occurs via a series of well-defined events in the secluded environment of the female reproductive tract. The mode of selection of the fertilizing spermatozoon nevertheless remains unknown. As has become evident during in vitro fertilization by sperm microinjection into the oocyte, abnormal spermatozoa can successfully fertilize oocytes. Under these extreme conditions, post-fertilization events, early embryonic development and implantation are significantly compromised indicating that the contribution of spermatozoa extends beyond sperm penetration. Microscopic identification of normal spermatozoa is a well-standardized procedure but insights into the mechanisms that lead to aberrant sperm differentiation and into the subcellular nature of sperm abnormalities have only recently begun to be obtained. The spermatozoon is the result of a complex development in which spermatid organelles give rise to various structural components with characteristic functions. Similar to other differentiated cells, the spermatozoon has a specific pathology that is most clearly identified by ultrastructural evaluation coupled with immunocytochemistry and molecular techniques. This multidisciplinary approach allows the precise characterization of sperm abnormalities, including structural, molecular and functional aspects. We summarize here studies of the physiopathology of spermiogenesis in two abnormal sperm phenotypes of infertile men: dysplasia of the fibrous sheath and acephalic spermatozoa/abnormal head-tail attachment. The characterization of the abnormalities of the tail cytoskeleton and centrioles has uncovered aspects of the subcellular basis of pathological spermiogenesis, has suggested experimental approaches to explore the nature of these anomalies and has opened the way for genetic studies that will ultimately lead to the design of the therapeutic tools of the future.  相似文献   

10.
11.
Cytoplasmic polyadenylation is a key mechanism controlling maternal mRNA translation in early development. In most cases, mRNAs that undergo poly(A) elongation are translationally activated; those that undergo poly(A) shortening are deactivated. Poly(A) elongation is regulated by two cis-acting sequences in the 3'-untranslated region (UTR) of responding mRNAs, the polyadenylation hexanucleotide AAUAAA and the U-rich cytoplasmic polyadenylation element (CPE). Previously, we cloned and characterized the Xenopus oocyte CPE binding protein (CPEB), showing that it was essential for the cytoplasmic polyadenylation of B4 RNA. Here, we show that CPEB also binds the CPEs of G10, c-mos, cdk2, cyclins A1, B1 and B2 mRNAs. We find that CPEB is necessary for polyadenylation of these RNAs in egg extracts, suggesting that this protein is required for polyadenylation of most RNAs during oocyte maturation. Our data demonstrate that the complex timing and extent of polyadenylation are partially controlled by CPEB binding to multiple target sites in the 3' UTRs of responsive mRNAs. Finally, injection of CPEB antibody into oocytes not only inhibits polyadenylation in vivo, but also blocks progesterone-induced maturation. This is due to inhibition of polyadenylation and translation of c-mos mRNA, suggesting that CPEB is critical for early development.  相似文献   

12.
13.
Seasonal variations in spermatozoa numbers and in sperm motility along the vas deferens in Crotalus durissus terrificus from southeastern Brazil were analyzed. Our data demonstrate storage and motility of the spermatozoa along the vas deferens throughout the year. This is characteristic of a postnuptial reproductive cycle, usually found in snakes living in temperate climates. We describe similarities in reproductive cycle patterns found in the tropical nonhibernator C. durissus terrificus and in hibernator snakes from temperate zones. Our results show that in C. durissus terrificus, a significant difference in spermatozoa counts occurs between winter and summer. Higher numbers of spermatozoa in summer and autumn, due to intense spermiogenesis, coincides with the mating season in autumn. These data indicate that after spermiogenesis in summer, the males combine the peak of sperm storage to the period females are attractive. Mating, however, is not linked to ovulation, and the sperm is stored in the females during winter until fertilization occurs in spring. In the males, after mating, spermatozoon counts low. In spring, they gradually increase, turning again the highest in summer and autumn. During spermiogenesis in the convoluted vas deferens, spermatozoa gain motility, enhancing their performance along their way towards the distal portion.  相似文献   

14.
15.
RNA isolated from Urechis caupo mature oocytes and embryos was analyzed for the presence of histone messenger RNAs (mRNAs) by in vitro translation and by filter blot hybridization to determine the contribution of maternal and newly transcribed histone mRNAs to the pattern of histone synthesis during early development. Histone mRNAs were not detected in mature oocyte RNA which suggests that relatively few if any maternal histone mRNAs are sequestered in the mature oocytes. Histone mRNAs were detected in cleavage-stage RNA and increased in amount from midcleavage through late gastrula stages. The in vitro translation analysis also demonstrated that the amount of H1 histone mRNA in late cleavage- and early blastula-stage embryos exceeds that of the individual core histone mRNAs. The disproportionate accumulation of individual histone mRNAs correlates with the noncoordinate synthesis of H1 and core histones which occurs during early embryogenesis.  相似文献   

16.
Delayed accumulation of maternal histone mRNA during sea urchin oogenesis   总被引:3,自引:0,他引:3  
We have used in situ hybridization and RNA blotting analysis to compare the timing of accumulation of poly(A) and alpha-subtype histone mRNA during oogenesis in the sea urchin Strongylocentrotus purpuratus. In situ hybridization with 3H-poly(U) shows that the content of poly(A) in the developing oocyte increases four- to sixfold during vitellogenesis, implying a similar increase for polyadenylated maternal RNAs. In contrast, both RNA blotting and in situ hybridization demonstrate that there is little, if any, alpha-subtype histone mRNA in large oocytes. These results suggest that these maternal mRNAs accumulate in the pronucleus of the haploid egg after completion of meiotic maturation where they are stored until their release during the breakdown of the pronucleus during prophase.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号