首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abilities of the M(3) muscarinic acetylcholine receptor (mAChR) and Rac1 to regulate similar cellular responses, including cadherin-mediated adhesion, prompted us to investigate Rac1 regulation by M(3) mAChR. We characterized changes in Rac1 induced by stimulating transfected M(3) mAChR in Chinese hamster ovary cells stably expressing hemagglutinin (HA)-tagged wild-type or mutant Rac1. mAChR activation converts endogenous Rac1 to the GTP-bound form in cells expressing HA-Rac1 but not in cells expressing dominant negative HA-Rac1(Asn-17) or constitutively active HA-Rac1(Val-12). The competitive binding of endogenous IQGAP1 by HA-Rac1(Val-12) may diminish the mAChR-mediated activation of endogenous Rac1. HA-Rac1 and HA-Rac1(Val-12), but not HA-Rac1(Asn-17), accumulate with IQGAP1 at cell junctions during mAChR-induced cell-cell compaction. Co-localization studies suggest that Rac1 can accumulate at junctions without IQGAP1, but IQGAP1 cannot accumulate at junctions without Rac1. mAChR activation also induces GTP-independent changes in Rac1 because mAChR activation redistributes HA-Rac1(Asn-17), which does not bind GTP. Actin associates with complexes containing HA-Rac1 or HA-Rac1(Val-12) after prolonged mAChR activation. We also demonstrate that Rac1 participates in mAChR-induced cell-cell compaction and c-Jun phosphorylation. These results indicate that M(3) mAChR activation converts Rac1 to the GTP-bound form, alters interactions between Rac1, IQGAP1, and actin, and causes the junctional accumulation of Rac1 and IQGAP1.  相似文献   

2.
Cell-cell adhesion is a dynamic process in various cellular and developmental situations. Cadherins, well-known Ca(2+)-dependent adhesion molecules, are thought to play a major role in the regulation of cell-cell adhesion. However, the molecular mechanism underlying the rearrangement of cadherin-mediated cell-cell adhesion is largely unknown. Cdc42 and Rac1, belonging to the Rho small GTPase family, have recently been shown to be involved in the regulation of cell-cell adhesion. In addition, IQGAP1, an effector for Cdc42 and Rac1, has been shown to regulate the cadherin function through interaction with beta-catenin, a molecule associated with cadherin. In this review, we will summarize the mode of action of Cdc42 and Rac1 as well as IQGAP1 as molecular switches for the cadherin function, and then discuss physiological processes in which the Cdc42/Rac1/IQGAP1 system may be involved.  相似文献   

3.
We have previously proposed that IQGAP1, an effector of Rac1 and Cdc42, negatively regulates cadherin-mediated cell-cell adhesion by interacting with beta-catenin and by causing the dissociation of alpha-catenin from cadherin-beta-catenin-alpha-catenin complexes and that activated Rac1 and Cdc42 positively regulate cadherin-mediated cell-cell adhesion by inhibiting the interaction of IQGAP1 with beta-catenin. However, it remains to be clarified in which physiological processes the Rac1-Cdc42-IQGAP1 system is involved. We here examined whether the Rac1-IQGAP1 system is involved in the cell-cell dissociation of Madin-Darby canine kidney II cells during 12-O-tetradecanoylphorbol-13-acetate (TPA)- or hepatocyte growth factor (HGF)-induced cell scattering. By using enhanced green fluorescent protein (EGFP)-tagged alpha-catenin, we found that EGFP-alpha-catenin decreased prior to cell-cell dissociation during cell scattering. We also found that the Rac1-GTP level decreased after stimulation with TPA and that the Rac1-IQGAP1 complexes decreased, while the IQGAP1-beta-catenin complexes increased during action of TPA. Constitutively active Rac1 and IQGAP1 carboxyl terminus, a putative dominant-negative mutant of IQGAP1, inhibited the disappearance of alpha-catenin from sites of cell-cell contact induced by TPA. Taken together, these results indicate that alpha-catenin is delocalized from cell-cell contact sites prior to cell-cell dissociation induced by TPA or HGF and suggest that the Rac1-IQGAP1 system is involved in cell-cell dissociation through alpha-catenin relocalization.  相似文献   

4.
Cadherin-dependent epithelial cell-cell adhesion is thought to be regulated by Rho family small GTPases and PI 3-kinase, but the mechanisms involved are poorly understood. Using time-lapse microscopy and quantitative image analysis, we show that cell-cell contact in MDCK epithelial cells coincides with a spatio-temporal reorganization of plasma membrane Rac1 and lamellipodia from noncontacting to contacting surfaces. Within contacts, Rac1 and lamellipodia transiently concentrate at newest sites, but decrease at older, stabilized sites. Significantly, Rac1 mutants alter kinetics of cell-cell adhesion and strengthening, but not the eventual generation of cell-cell contacts. Products of PI 3-kinase activity also accumulate dynamically at contacts, but are not essential for either initiation or development of cell-cell adhesion. These results define a role for Rac1 in regulating the rates of initiation and strengthening of cell-cell adhesion.  相似文献   

5.
The cellular RACK1 was shown in association with Abl in BALB/3T3 cells transfected with S-ras(Q(61)K) by immunoprecipitation. An identical finding was demonstrated with cells transfected with the embryonic E-ras, but not in cells without transformation. The Abl-RACK1 of transformed cells as resolvable with Triton X-114 was found with little affinity for FAK, PY(397)-FAK and integrin. Of interests, PY(397)-FAK in the membrane skeleton of transformed cells was shown in significant quantities on the Western blot. However the PY(397)-FAK of transformed cells was not functionally able to react with RACK1 and recruit cytokeratin-1, a substrate of Src, indicating that PY(397)-FAK is not operative to transmit integrin signals. In other words, the Abl-RACK1 of transformed cells cannot replace the Src-RACK1 of cells without transformation to bridge PY(397)-FAK and cytokeratin-1 for integrin signals, and the formation of Abl-RACK1 in transformed cells may block the association of PY(397)-FAK-RACK1. We characterized Abl and RACK1 from transformed cells by chromatography on a HiTrap-PEP(Taxol) affinity column, constructed from a beta-tubulin peptide specific for Taxol binding (PEP(Taxol)). However, the Triton X-100 cannot achieve the same resolution of Abl-RACK1 from plasma membrane as is shown with Triton X-114. A significant fraction of Abl was deposited at the membrane skeleton and was therefore not accessible with Triton X-100. Half of Abl resolved with Triton X-100 was demonstrated to have catalytic activity as shown with positive phosphotyrosine staining on the Western blot and competitive elution with a specific phosphate, such as sodium beta-glycerophosphate, from HiTrap-PEP(Taxol), but this was not associated with RACK1. No significant difference of RACK1 was found in Triton X-100 resolvable membrane preparations from cells with and without transformations. Future studies are planned to differentiate the mechanism operative for RACK1 associated and RACK1 freed Abl in cells transformed with oncogenic ras.  相似文献   

6.
Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein involved in vascular smooth muscle cell (VSMC) migration and proliferation. The objective of this study is to characterize AIF-1 functional protein interactions that may regulate VSMC activation. Through use of a bacterial two-hybrid screen, we identified a molecular interaction between AIF-1 and the small GTPase, Rac2, which was verified by pull-down and colocalization experiments. This was unexpected in that Rac2 expression had been considered to be restricted to hematopoietic cells. The Rac2/AIF-1 interaction is functional, in that a loss-of-function, point-mutated AIF-1 does not interact with Rac2; Rac2 colocalizes with AIF-1 in the cytoplasm of VSMC and cotranslocates to lamellopodia upon platelet-derived growth factor stimulation; and AIF-1 expression in VSMC leads to Rac2 activation. Because Rac2 function in VSMC had not been described, we focused on characterization of its function in these cells. Rac2 protein expression in VSMC is inducible by inflammatory cytokines, and Rac2 activation in VSMC is also responsive to inflammatory cytokines. Rac2 expression and activation patterns differ from the ubiquitously expressed Rac1. We hypothesized that Rac2 participates in VSMC activation. Retroviral overexpression of Rac2 in primary VSMC leads to increased migration, activation of the NADPH oxidation cascade, and increased activation of the Rac2 effector protein Pak1 and its proximal effectors, ERK1/2, and p38 (P < 0.05 for all). The major points of this study indicate a functional interaction between AIF-1 and Rac2 in VSMC leading to Rac2 activation and a potential function for Rac2 in inflammation-driven VSMC response to injury. allograft inflammatory factor-1; signal transduction  相似文献   

7.
Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.  相似文献   

8.
Telomeres are maintained by three DNA-binding proteins (telomeric repeat binding factor 1 [TRF1], TRF2, and protector of telomeres 1 [POT1]) and several associated factors. One factor, TRF1-interacting protein 2 (TIN2), binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether subcomplexes also exist in vivo. We provide evidence for two TIN2 subcomplexes with distinct functions in human cells. We isolated these two TIN2 subcomplexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13 and TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.  相似文献   

9.
Interleukin 2 (IL 2) has been shown to be a potent stimulator of natural killer (NK) cells. In the present studies, partially purified mouse and human IL 2 preparations were also found to induce interferon (IFN) from mouse spleen cells. By the criteria of sensitivity to treatment at pH 2 and failure to be neutralized by a potent anti-alpha, beta IFN serum, the species of IFN produced was of type gamma. Cooperation between two types of cell, a macrophage and an NK-like cell, was required for IFN production by murine spleen cells treated with IL 2. The requirement for macrophages could be replaced with supernatant obtained by incubating macrophages for 24 hr with lymphokine preparations containing IL 2. Interestingly, mature T cells apparently played no role in the process. Furthermore, the beige (bg/bg) mutation, which severely impairs NK cell lytic activity, had no effect on the ability of NK-like cells to participate in IFN production. Cell fractionation experiments revealed no dissociation between the requirements for augmentation of NK cytotoxic activity and for IFN production, and it is concluded that at least a portion of the NK boosting induced by IL 2-containing preparations is mediated through gamma-IFN.  相似文献   

10.
Kitt KN  Nelson WJ 《PloS one》2011,6(3):e17841
Cell-cell adhesion in simple epithelia involves the engagement of E-cadherin and nectins, and the reorganization of the actin cytoskeleton and membrane dynamics by Rho GTPases, particularly Rac1. However, it remains unclear whether E-cadherin and nectins up-regulate, maintain or suppress Rac1 activity during cell-cell adhesion. Roles for Rho GTPases are complicated by cell spreading and integrin-based adhesions to the extracellular matrix that occur concurrently with cell-cell adhesion, and which also require Rho GTPases. Here, we designed a simple approach to examine Rac1 activity upon cell-cell adhesion by MDCK epithelial cells, without cell spreading or integrin-based adhesion. Upon initiation of cell-cell contact in 3-D cell aggregates, we observed an initial peak of Rac1 activity that rapidly decreased by ~66% within 5 minutes, and further decreased to a low baseline level after 30 minutes. Inhibition of E-cadherin engagement with DECMA-1 Fab fragments or competitive binding of soluble E-cadherin, or nectin2alpha extracellular domain completely inhibited Rac1 activity. These results indicate that cadherins and nectins cooperate to induce and then rapidly suppress Rac1 activity during initial cell-cell adhesion, which may be important in inhibiting the migratory cell phenotype and allowing the establishment of initially weak cell-cell adhesions.  相似文献   

11.
The small G proteins Cdc42, Rac1, and Rac2 regulate the rearrangements of actin and membrane necessary for Fcgamma receptor-mediated phagocytosis by macrophages. Activated, GTP-bound Cdc42, Rac1, and Rac2 bind to the p21-binding domain (PBD) of PAK1, and this interaction provided a basis for microscopic methods to localize activation of these G proteins inside cells. Fluorescence resonance energy transfer-based stoichiometry of fluorescent chimeras of actin, PBD, Cdc42, Rac1, and Rac2 was used to quantify G protein activation relative to actin movements during phagocytosis of IgG-opsonized erythrocytes. The activation dynamics of endogenous G proteins, localized using yellow fluorescent protein-labeled PBD, was restricted to phagocytic cups, with a prominent spike of activation over an actin-poor region at the base of the cup. Refinements of fluorescence resonance energy transfer stoichiometry allowed calculation of the fractions of activated GTPases in forming phagosomes. Cdc42 activation was restricted to the leading margin of the cell, whereas Rac1 was active throughout the phagocytic cup. During phagosome closure, activation of Rac1 and Rac2 increased uniformly and transiently in the actin-poor region of phagosomal membrane. These distinct roles for Cdc42, Rac1, and Rac2 in the component activities of phagocytosis indicate mechanisms by which their differential regulation coordinates rearrangements of actin and membranes.  相似文献   

12.
The significance of multiprotein signaling complexes in cell motility is becoming increasingly important. We have previously shown that phospholipase Cgamma1 (PLCgamma1) is critical for integrin-mediated cell spreading and motility (N. Jones et al., J. Cell Sci. 118:2695-2706, 2005). In the current study we show that, on a basement membrane-type matrix, PLCgamma1 associates with the adaptor protein GIT1 and the Rac1/Cdc42 guanine exchange factor beta-Pix; GIT1 and beta-Pix form tight complexes independently of PLCgamma1. The association of PLCgamma1 with the complex requires both GIT1 and beta-Pix and the specific array region (gammaSA) of PLCgamma1. Mutations of PLCgamma1 within the gammaSA region reveal that association with this complex is essential for the phosphorylation of PLCgamma1 and the progression to an elongated morphology after integrin engagement. Short interfering RNA (siRNA) depletion of either beta-Pix or GIT1 inhibited cell spreading in a fashion similar to that seen with siRNA against PLCgamma1. Furthermore, siRNA depletion of PLCgamma1, beta-Pix, or GIT1 inhibited Cdc42 and Rac1 activation, while constitutively active forms of Cdc42 or Rac1, but not RhoA, were able to rescue the elongation of these cells. Signaling of the PLCgamma1/GIT1/beta-Pix complex to Cdc42/Rac1 was found to involve the activation of calpains, calcium-dependent proteases. Therefore, we propose that the association of PLCgamma1 with complexes containing GIT1 and beta-Pix is essential for its role in integrin-mediated cell spreading and motility. As a component of this complex, PLCgamma1 is also involved in the activation of Cdc42 and Rac1.  相似文献   

13.
The small Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 have distinct roles in regulating neutrophil chemotaxis; however, little is known about their possible unique roles in mediating bacterial killing. To elucidate the relative roles of Rac1 and Rac2 in regulating neutrophil-mediated bacterial killing, we utilized the previously described mice model in which mouse neutrophils are deficient in either Rac1, Rac2, or both isoforms. We demonstrate here that while both Rac isoforms are required for normal neutrophil chemotaxis and bacterial killing, they have non-overlapping roles in bacterial phagocytosis and NADPH oxidase function.  相似文献   

14.
Serine/threonine protein phosphatase (PP) 2A regulates many biological processes, however it remains unclear whether PP2A participates in cadherin-mediated cell-cell adhesion. We show here that the core enzyme of PP2A (PP2A-AC) is localized in the cell-cell adhesion sites between adjacent cells and associated with the E-cadherin-catenins complex in non-malignant human mammary epithelial (HME) cells at confluence. Treatment of the cells with either okadaic acid (OA), an inhibitor of PP2A, or siRNA for the regulatory subunit A of PP2A (PP2A-A) caused disruption of cell-cell adhesion and F-actin assembly, without affecting the complex formation of E-cadherin with beta- and alpha-catenins. While a small GTPase Rac and its effector IQGAP1 were associated with the E-cadherin-catenins complex, either OA or PP2A-A siRNA concomitantly induced the dissociation of IQGAP1, but not Rac, from the complex and the internalization of E-cadherin from the cell surface. We therefore propose that PP2A plays a crucial role in the maintenance of cell-cell adhesion through recruitment of IQGAP1 to the Rac-bound E-cadherin-catenins complex.  相似文献   

15.
Intestinal epithelial cells are subject to repetitive deformation during peristalsis and villous motility, whereas the mucosa atrophies during sepsis or ileus when such stimuli are abnormal. Such repetitive deformation stimulates intestinal epithelial proliferation via focal adhesion kinase (FAK) and extracellular signal-regulated kinases (ERK). However, the upstream mediators of these effects are unknown. We investigated whether Src and Rac1 mediate deformation-induced FAK and ERK phosphorylation and proliferation in human Caco-2 and rat IEC-6 intestinal epithelial cells. Cells cultured on collagen-I were subjected to an average 10% cyclic strain at 10 cycles/min. Cyclic strain activated Rac1 and induced Rac1 translocation to cell membranes. Mechanical strain also induced rapid sustained phosphorylation of c-Src at Tyr(418), Rac1 at Ser(71), FAK at Tyr(397) and Tyr(576), and ERK1/2 at Thr(202)/Tyr(204). The mitogenic effect of cyclic strain was blocked by inhibition of Src (PP2 or short interfering RNA) or Rac1 (NSC23766). Src or Rac1 inhibition also prevented strain-induced FAK phosphorylation at Tyr(576) and ERK phosphorylation but not FAK phosphorylation at Tyr(397). Reducing FAK using short interfering RNA blocked strain-induced mitogenicity and attenuated ERK phosphorylation but not Src or Rac1 phosphorylation. Src inhibition blocked strain-induced Rac1 phosphorylation, but Rac inhibition did not alter Src phosphorylation. Transfection of a two-tyrosine phosphorylation-deficient FAK mutant Y576F/Y577F prevented activation of cotransfected myc-ERK2 by cyclic strain. Repetitive deformation induced by peristalsis or villus motility may support the gut mucosa by a pathway involving Src, Rac1, FAK, and ERK. This pathway may present important targets for interventions to prevent mucosal atrophy during prolonged ileus or fasting.  相似文献   

16.
17.
FAK, a cytoplasmic protein tyrosine kinase, is activated and localized to focal adhesions upon cell attachment to extracellular matrix. FAK null cells spread poorly and exhibit altered focal adhesion turnover. Rac1 is a member of the Rho-family GTPases that promotes membrane ruffling, leading edge extension, and cell spreading. We investigated the activation and subcellular location of Rac1 in FAK null and FAK reexpressing fibroblasts. FAK reexpressers had a more robust pattern of Rac1 activation after cell adhesion to fibronectin than the FAK null cells. Translocation of Rac1 to focal adhesions was observed in FAK reexpressers, but seldom in FAK null cells. Experiments with constitutively active L61Rac1 and dominant negative N17Rac1 indicated that the activation state of Rac1 regulated its localization to focal adhesions. We demonstrated that FAK tyrosine-phosphorylated betaPIX and thereby increased its binding to Rac1. In addition, betaPIX facilitated the targeting of activated Rac1 to focal adhesions and the efficiency of cell spreading. These data indicate that FAK has a role in the activation and focal adhesion translocation of Rac1 through the tyrosine phosphorylation of betaPIX.  相似文献   

18.
Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes), scaffolded by hematopoietic protein 1 (Hem-1), that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE)2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference–mediated knockdown of Hem-1–containing complexes in neutrophil-like cells: (a) dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b) substantially weakens Rac activation and phosphatidylinositol-(3,4,5)-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5)-tris-phosphate)/Rac/F-actin–mediated feedback circuit that organizes the leading edge; and (c) prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1–containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.  相似文献   

19.
20.
Kindlins are focal adhesion proteins that regulate integrin signaling. Although integrin activation is critical for bone development, little is known about the expression and role of kindlins in osteoblasts. We therefore investigated the function of kindlin-2 in osteoblast adhesion, spreading, and proliferation using small interfering RNA. In MC3T3-E1 cells, only kindlin-2 is highly expressed and localizes to focal adhesion. We found that kindlin-2 was involved in integrin activation in MC3T3-E1 cells and that kindlin-2 knockdown osteoblasts resulted in diminished cell adhesion, spreading, and proliferation. In this process, kindlin-2 knockdown impaired transient Rac1 activation, influencing Akt activation and AP-1 activity. In agreement with these data, pharmacological inhibition of Rac1 reduced MC3T3-E1 cell adhesion, spreading, and proliferation. Overall, these findings demonstrated that kindlin-2 governs Rac1 activation, which controls osteoblast function. Our findings provide the first insights concerning the function of kindlin-2 in osteoblast, and suggest that kindlin-2 is a critical mediator for osteoblast physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号