首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstitution of active sucrose transport in plant proteoliposomes   总被引:6,自引:0,他引:6  
Z S Li  O Gallet  C Gaillard  R Lemoine  S Delrot 《FEBS letters》1991,286(1-2):117-120
The proteins of purified plasma membranes from sugar beet (Beta vulgaris L.) leaf were solubilized and separated on a size exclusion column. The fractions eluted from the column were monitored by ELISA with antibodies directed to a putative sucrose carrier protein. The peak most reactive in ELISA was approximately 120 kDa, and yielded a 40 kDa peak after denaturation by SDS. The 120-kDa peak was recovered and used for reconstitution experiments with asolectin. Upon imposition of an artificial pH gradient and electrical gradient, the obtained proteoliposomes exhibited active transport of sucrose, but not of valine. The active transport of sucrose was inhibited by N-ethylmaleimide and HgCl2.  相似文献   

2.
3.
When frozen plasma membranes isolated from maize seedling roots are thawed, a significant portion of GTP-binding activity goes into solution. The GTP-binding protein was purified by ion exchange chromatography on Mono-Q and gel filtration on Superose 6. Its molecular weight was estimated at 61 kDa by gel filtration. The same molecular weight was obtained upon solubilization of the GTP-binding protein with cholic acid followed by gel filtration in the presence of this detergent. SDS-PAGE demonstrated that the isolated GTP-binding protein consists of two types of subunit of molecular weights 27 kDa and 34 kDa.  相似文献   

4.
The taurocholic acid transport system from hepatocyte sinusoidal plasma membranes has been studied using proteoliposome reconstitution procedures. Membrane proteins were initially solubilized in Triton X-100. Following detergent removal, the resultant proteins were incorporated into lipid vesicles prepared from soybean phospholipids (asolectin) using sonication and freeze-thaw procedures. The resultant proteoliposomes demonstrated Na+-dependent transport of taurocholic acid which could be inhibited by bile acids. Greatly reduced amounts of taurocholic acid were associated with the phospholipid or membrane proteins alone prior to proteoliposome formation. Membrane proteins were fractionated on an anionic glycocholate-Sepharose 4B affinity column which was prepared by coupling (3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholan-24-oyl)-N alpha-lysine to activated CH-Sepharose 4B via the epsilon-amino group of lysine resulting in the retention of a free carboxyl group. The adsorbed proteins enriched in components in the 54 kDa zone, which were originally identified by photoaffinity labeling to be components of the bile acid transport system, were also incorporated into liposomes. This vesicle system showed almost a 4-fold increase in Na+-dependent taurocholic acid uptake when compared to proteoliposomes formed from total membrane protein, as well as sensitivity to inhibition by bile acids. These results demonstrate that the bile acid carrier system can be reconstituted in proteoliposomes and that utilizing proteins in the 54 kDa zone leads to a significant enhancement in the transport capacity of the reconstituted system, consistent with the role of 54 kDa protein(s) as component(s) of the bile acid carrier system.  相似文献   

5.
The Na+-dependent D-glucose transport system of rat jejunal brush border membranes was partially purified and reconstituted into functional proteoliposomes. Brush border membrane vesciles isolated from villous cells were first extracted with 0.3% cholate to remove extrinsic proteins and the insoluble residual pellet was reextracted with 1.2% cholate. The 1.2% cholate-extracted soluble fraction was then further purified by hydroxylapatite and Concanavalin A affinity chromatography in tandem. When the HLP-unadsorbed-ConA-unadsorbed fraction was reconstituted into proteoliposomes, it showed a characteristic Na+-coupled, phlorizin inhibitable, D-glucose transport activity that was 3 fold higher than that of the reconstituted proteoliposomes of the 1.2% cholate-extracted fraction. This partially purified fraction also displayed the simplest polypeptide composition pattern among all the membrane fractions analysed in SDS-polyacrylamide gels.  相似文献   

6.
Purification and reconstitution of the high affinity choline transporter   总被引:1,自引:0,他引:1  
The high-affinity choline transporter has been solubilized from synaptosomal membranes by various detergents. The solubilized carrier protein has been incorporated into liposomes after removal of the detergent by dialysis. Using the reconstitution of choline transport activity as an assay, the components catalyzing choline translocation were purified from the detergent extract by ion-exchange chromatography on a Mono-Q column followed by immunoaffinity chromatography. Monitoring the active fractions by sodium dodecylsulfate polyacrylamide gel electrophoresis and isoelectrofocussing gave one major protein with an apparent molecular weight of about 90,000 and an isoelectric point of pH 4.7. The isolated protein appeared to be heavily glycosylated as shown by lectin binding; upon treatment with endoglycosidase F the polypeptide was degraded to an apparent molecular weight of about 65,000. Accumulation of choline into liposomes reconstituted with the purified protein was driven by artificially imposed sodium gradients and inhibited by hemicholinium-3.  相似文献   

7.
When isolated rabbit gastric glands were permeabilized with digitonin, they lost their ability to secrete acid, as monitored by [14C]aminopyrine accumulation, and they never recovered by supplement with cytosol prepared from gastric mucosa. However, the permeabilized glands elicited acid secretion when brain cytosol was supplemented. Fractionation of gastric cytosol by gel filtration revealed that the fraction at 30 kDa stimulated permeabilized glands by itself, whereas the 200-kDa fraction potently inhibited brain cytosol-stimulated acid secretion. Brain cytosol contained only the former stimulatory factor. With further gel filtration, the 30-kDa activator was separated into two components, 20 kDa (peak 1) and 1.8 kDa (peak 2), both of which are necessary for full activity. We purified peak 1 from bovine brain, and phosphatidylinositol transfer protein (PITP) was identified as the main component of the activity. The stimulating activity in brain and gastric mucosa correlated with the contents of PITP, and recombinant PITP mimicked the effect of peak 1, suggesting that PITP is one of the essential components in gastric acid secretion. When gastric glands were stimulated, the inhibitory activity, but not stimulatory activity, in the cytosol was increased. This suggests a regulatory mechanism such as stimulation translocates the inhibitory component from the secretory site on the membrane to cytosol. These results demonstrate a high degree of usefulness for our present model, the reconstituted digitonin-permeabilized gastric glands.  相似文献   

8.
Summary A membrane extract enriched with the Na+-dependentd-glucose transport system was obtained by differential cholate solubilization of rat renal brush border membranes in the presence of 120mm Na+ ions. Sodium ions were essential in stabilizing the transport system during cholate treatment. This membrane extract was further purified with respect to its Na+-coupledd-glucose transport activity and protein content by the use of asolectin-equilibrated hydroxylapatite. The reconstituted proteoliposomes prepared from this purified fraction showed a transient accumulation ofd-glucose in response to a Na+ gradient. The observed rate of Na+-coupledd-glucose uptake by the proteoliposomes represented about a sevenfold increase as compared to that of the reconstituted system derived from an initial 1.2% cholate extract of the membranes. Other Na+-coupled transport systems such asl-alanine, -ketoglutarate and phosphate were not detected in these reconstituted proteoliposomes.  相似文献   

9.
The glucose transporter of rat brain was examined by the use of cytochalasin B, a potent inhibitor. The dissociation constants (Kd) of D-glucose-inhibitable cytochalasin B binding in various membrane fractions were about 100 nM. Solubilization and partial purification of glucose transporter were carried out by procedures of DE 52 column chromatography, Bio Gel HT column chromatography and Sepharose CL-6B column chromatography from postnuclear membrane fraction. Purified transporter, reconstituted in lipid vesicles, showed D-glucose-specific transport activity with a Michaelis constant (Km) of 7 mM. The molecular weight was estimated to be about 200K by gel filtration in the presence of 0.1% Triton X-100. The subunit molecular weight was estimated to be 45K by SDS-polyacrylamide gel electrophoresis after photoaffinity labeling using [3H]cytochalasin B as a covalent probe, indicating that rat brain glucose transporter is a tetramer.  相似文献   

10.
Structural analysis of native or recombinant membrane transport proteins has been hampered by the lack of effective methodologies to purify sufficient quantities of active protein. We addressed this problem by expressing a polyhistidine tagged construct of the cardiac sodium-calcium exchanger (NCX1) in Trichoplusia ni larvae (caterpillars) from which membrane vesicles were prepared. Larvae vesicles containing recombinant NCX1-his protein supported NCX1 transport activity that was mechanistically not different from activity in native cardiac sarcolemmal vesicles although the specific activity was reduced. SDS-PAGE and Western blot analysis demonstrated the presence of both the 120 and 70 kDa forms of the NCX1 protein. Larvae vesicle proteins were solubilized in sodium cholate detergent and fractionated on a chelated Ni(2+) affinity chromatography column. After extensive washing, eluted fractions were mixed with soybean phospholipids and reconstituted. The resulting proteoliposomes contained NCX1 activity suggesting the protein retained native conformation. SDS-PAGE revealed two major bands at 120 and 70 kDa. Purification of large amounts of active NCX1 via this methodology should facilitate biophysical analysis of the protein. The larva expression system has broad-based application for membrane proteins where expression and purification of quantities required for physical analyses is problematic.  相似文献   

11.
A protein conferring passive chloride permeability was isolated from a N-octylglucoside solubilized extract of partially purified H(+)-transporting osteoclast cell membranes. Purification was achieved by binding of solubilized protein to an amine-linked 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) Sepharose 4B column and elution with 50 mM KCl. A major protein, with MR = 60 kD on 10% SDS-PAGE, was obtained, which was further purified to homogeneity by HPLC gel filtration. This protein introduced 36Cl- permeability when reconstituted in phospholipid membranes by equilibrium dialysis. The Cl- transport recovered in reconstituted membranes retained sensitivity to DIDS confirming the identity of the isolated protein as a stilbene-sensitive chloride channel.  相似文献   

12.
The vacuolar ATPase was purified from a tonoplast-enriched membrane fraction from barley (Hordeum vulgare cv CM72) roots. The membranes were solubilized with Triton X-100 and the membrane proteins were separated by chromatography on Sephacryl S-400 followed by fast protein liquid chromatography on a Mono-Q column. The purified vacuolar ATPase was inhibited up to 90% by KNO3 or 80% by dicyclohexylcarbodiimide (DCCI). The ATPase was resolved into polypeptides of 115, 68, 53, 45, 42, 34, 32, 17, 13, and 12 kDa. An additional purification step of centrifugation on a glycerol gradient did not result in loss of any polypeptide bands or increased specific activity of the ATPase. Antibodies against the purified holoenzyme inhibited proton transport by the native ATPase. Two peaks of solubilized Ca(2+)-ATPase were obtained from the Sephacryl S-400 column. A peak of Ca(2+)-ATPase copurified with the vacuolar ATPase during all of the purification steps and was inhibited by NO3- and DCCI. It is proposed that this Ca(2+)-ATPase is a partial reaction of the plant vacuolar ATPase. The second Ca(2+)-ATPase was greatly retarded on the Sephacryl S-400 column and eluted after the main protein peak. It was not inhibited significantly by NO3- or DCCI. The second Ca(2+)-ATPase is a major component of ATP hydrolysis by the native membranes.  相似文献   

13.
Purification of the cardiac Na+-Ca2+ exchange protein   总被引:4,自引:0,他引:4  
We have used fractionation procedures to enrich solubilized cardiac sarcolemma in the Na+-Ca2+ exchange protein. Sarcolemma is extracted with an alkaline medium to remove peripheral proteins and is then solubilized with decylmaltoside. Next, the exchanger is applied to DEAE-Sepharose and eluted with high salt. The DEAE fraction is applied to WGA-agarose, and a small fraction of protein, enriched in the exchanger, can be eluted by changing the detergent to Triton X-100. This fraction is reconstituted into asolectin proteoliposomes for measurement of Na+-Ca2+ exchange activity and gel electrophoresis. The purified fraction has a Na+-Ca2+ exchange activity of 600 nmol Ca2+/mg of protein per s at 10 microM Ca2+ and a purification factor of about 30 as compared with control reconstituted sarcolemmal vesicles. Ca2+-Ca2+ exchange and Na+-Ca2+ exchange activities were both present in the same final reconstituted vesicles indicating that the same protein is responsible for both transport activities. SDS-PAGE reveals two prominent protein bands at 70 and 120 kDa. After mild chymotrypsin treatment (1 microgram/ml), there is no loss of exchange activity, but the 120 kDa band disappears and the 70 kDa band becomes more dense. This suggests that the 70 kDa band is due to an active proteolytic fragment of the 120 kDa protein. Under non-reducing gel conditions, only a single protein band is seen with an apparent molecular weight of 160 kDa. Antibodies to the purified exchanger preparation are able to immunoprecipitate exchange activity and confirm that the 70 kDa protein derives from the 120 kDa protein. We propose that both the 70 and 120 kDa proteins are associated with the Na+-Ca2+ exchanger.  相似文献   

14.
Bovine renal brush-border membranes were solubilized by 1.6% sodium cholate. Na+/H(+)-antiporter was recovered in the supernatant after centrifugation at 160,000 x g for 1 h and was successfully reconstituted into proteoliposomes by a cholate-dialysis procedure. The reconstituted Na+/H(+)-antiporter showed a pH-gradient dependent and amiloride-sensitive 22Na+ uptake very similar to that of brush-border membrane vesicles. Factors affecting the efficiency of reconstitution as well as the stability of the solubilized antiporter at various temperatures were studied. Sodium cholate-solubilized brush-border membrane proteins were fractionated by Sephacryl S-400 and DEAE-Toyopearl chromatography, and fractions containing reconstitutively active Na+/H(+)-antiporter were identified. A 110 kDa peptide cross-reactive with a polyclonal antibody against a C-terminal peptide (22-amino acid residues) of human Na+/H(+)-antiporter was consistently found on the immunoblot of the active fractions. A closely similar peptide was also detected in human placental membranes by this antibody. These results strongly suggest that the 110 kDa protein is responsible for Na+/H(+)-antiporter activity.  相似文献   

15.
Membrane vesicles of Halobacterium halobium R1Wrm bind to an aspartic acid-agarose affinity column. After disruption of the bound vesicles by low ionic strength, a protein fraction is eluted from the column with 2.5% cholate in 3 M NaCl. When this fraction is reconstituted with soybean lipids to form proteoliposomes, the proteoliposomes exhibit active aspartate accumulation. Aspartate transport in the reconstituted system is driven by a chemical sodium gradient (out greater than in), exhibits sensitivity to an electrical potential, and is specific for L-aspartate. These characteristics are consistent with observations on aspartate transport in intact membrane vesicles of H. halobium. Initial aspartate transport rates in the reconstituted system are about ninefold enhanced over the native system. The system developed should be useful in future purification schemes and studies of the molecular details of membrane transport.  相似文献   

16.
The sodium-dependent transport system for branched-chain amino acids of Pseudomonas aeruginosa was solubilized with n-octyl-beta-D-glucopyranoside and reconstituted into liposomes by a detergent-Sephadex G-50 gel filtration procedure. The reconstituted proteoliposomes exhibited Na+-dependent counterflow and Na+-gradient-driven transport of L-leucine, L-isoleucine, and L-valine. The leucine counterflow was specifically inhibited by only branched-chain amino acids and the uphill transport of two species of amino acids among the three was induced by counterflow of the other substrate. These results show that the transport system for branched-chain amino acids was reconstituted into liposomes from P. aeruginosa cells and strongly suggest that three branched-chain amino acids are transported by a common carrier system.  相似文献   

17.
Reconstitution of the glucose transporter from bovine heart   总被引:1,自引:0,他引:1  
Reconstitution of the glucose transporter from heart should be useful as an assay in its purification and in the study of its regulation. We have prepared plasma membranes from bovine heart which display D-glucose reversible binding of cytochalasin B (33 pmol sites/mg protein; Kd = 0.2 muM). The membrane proteins were reconstituted into liposomes by the freeze-thaw procedure. Reconstituted liposomes showed D-glucose transport activity which was stereospecific, saturable and inhibited by cytochalasin B, phloretin, and mercuric chloride. Compared to membrane proteins reconstituted directly, proteins obtained by dispersal of the membranes with low concentrations of cholate or by cholate solubilization showed 1.2- or 2.3-fold higher specific activities for reconstituted transport, respectively. SDS-polyacrylamide gel electrophoresis followed by electrophoretic protein transfer and labeling with antisera prepared against the human erythrocyte transporter identified a single band of about 45 kDa in membranes from both dog and bovine hearts, a size similar to that reported for a number of other glucose transporters in various animals and tissues.  相似文献   

18.
Proteins from rabbit kidney brush border membranes were solubilized with 1% Nonidet P-40 (crude membrane proteins) and fractionated according to their isoelectric points (pI) by chromatofocusing. The eluate was pooled into three fractions according to the pI of the samples (1, greater than 6.8; 2, 6.8-5.4; 3, 5.4-4.0). The crude membrane proteins as well as the three fractions were reconstituted into liposomes and transport of Pi was measured by a rapid filtration technique in the presence of an inwardly directed K+ or Na+ gradient. Arsenate-inhibitable Na+-dependent transport of Pi was reconstituted into an osmotically active intravesicular space from both the crude membrane proteins and Fraction 1. In contrast, Fractions 2 and 3 were inactive. Treatment of the crude membrane proteins and the three fractions with the method for extracting phosphorin (a Pi-binding proteolipid found in brush border membranes) yielded Mn2+-dependent binding of Pi characteristic of phosphorin only in the extracts from crude membrane proteins and Fraction 1, the same fractions in which Na+-dependent transport of Pi was found in the reconstituted system. When reconstituted into liposomes, phosphorin was, however, unable to yield Na+-dependent transport of Pi. Moreover, we cannot eliminate the possibility that Na+-Pi transport can occur in the absence of phosphorin, since complete recovery of Na+-Pi transport was not achieved. However, the present data showing localization of the recovered binding and transport systems for Pi in the same protein fraction lend support to the hypothesis that phosphorin might be a constituent of the renal Pi transport system. Whether the presence of phosphorin is necessary or accessory for Na+-dependent Pi transport in intact brush border membrane vesicles or in liposomes reconstituted with crude or purified membrane proteins requires further investigation.  相似文献   

19.
An alanine transport carrier was solubilized from membranes of the thermophilic bacterium PS3 with cholate-deoxycholate mixture. It was then partially purified by diethyl aminoethyl cellulose column chromatography and gel filtration. For assay of alanine carrier activity it was reconstituted into vesicles with P-lipids and the transport energy was supplied as a membrane potential introduced by K+-diffusion via valinomycin. The partially purified carrier had no ATPase or NADH dehydrogenase activity. Active transport of alanine driven by the membrane potential was completely abolished by an uncoupler.  相似文献   

20.
J S Wu  J E Lever 《Biochemistry》1987,26(18):5790-5796
Conformation-dependent fluorescein isothiocyanate (FITC) labeling of the pig renal Na+/glucose symporter was investigated with specific monoclonal antibodies (MAb's). When renal brush border membranes were pretreated with phenyl isothiocyanate (PITC), washed, and then treated at neutral pH with FITC in the presence of transporter substrates Na+ and glucose, most of the incorporated fluorescence was associated with a single peak after resolution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent molecular mass of the FITC-labeled species ranged from 79 to 92 kDa. Labeling of this peak was specifically reduced by 70% if Na+ and glucose were omitted. Na+ could not be replaced by K+, Rb+, or Li+. FITC labeling of this peak was also stimulated after incubation of membranes with MAb's known to influence high-affinity phlorizin binding, and stimulation was synergistically increased when MAb's were added in the presence of Na+ and glucose. Substrate-induced or MAb-induced labeling correlated with inactivation of Na+-dependent phlorizin binding. MAb's recognized an antigen of 75 kDa in the native membranes whereas substrate-induced FITC labeling was accompanied by loss of antigen recognition and protection from proteolysis. These findings are consistent with a model in which MAb's stabilize a Na+-induced active conformer of the Na+/glucose symport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号