首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herbst R  Zhang X  Qin J  Simon MA 《The EMBO journal》1999,18(24):6950-6961
The pleckstrin homology (PH) domain-containing protein Daughter of Sevenless (DOS) is an essential component of the Sevenless receptor tyrosine kinase (SEV) signaling cascade, which specifies R7 photoreceptor development in the Drosophila eye. Previous results have suggested that DOS becomes tyrosine phosphorylated during SEV signaling and collaborates with the protein tyrosine phosphatase CSW. We have investigated this possibility by identifying tyrosine residues 801 and 854 of DOS as the phosphorylated binding sites for the CSW SH2 domains. We show that these sites become phosphorylated in response to SEV activation and that phosphorylation of both sites is required to allow CSW to bind DOS. Mutant DOS proteins in which either Y801 or Y854 of DOS has been changed to phenylalanine are unable to function during signaling by SEV and other receptor tyrosine kinases. In contrast, we find that a mutant DOS protein in which all tyrosine phosphorylation sites except Y801 and Y854 have been removed is able effectively to provide DOS function during SEV signaling and to rescue the lethality associated with dos loss-of-function mutations. These results indicate that a primary role for DOS during signaling by SEV and other receptor tyrosine kinases is to become phosphorylated at Y801 and Y854 and then recruit CSW.  相似文献   

2.
3.
A full-length cDNA was selectively amplified by the polymerase chain reaction (PCR) utilizing a primer pair consisting of a "universal" 21-base synthetic deoxyoligonucleotide (oligo dT 17GGCC) and a specific degenerate deoxyoligonucleotide sequence (DOS) derived from the N-terminal amino acid sequence. This double-stranded amplified cDNA was uni-directionally cloned into M13mp19 utilizing two restriction sites that had been previously incorporated into the termini of the universal and specific DOS primers. Cloning of the specific cDNA via this PCR amplification with the universal/specific DOS primer pair approach was confirmed by screening with a second DOS contiguous with the DOS employed to prime second (sense)-strand cDNA synthesis. This technique allows for the selective full-length cDNA cloning of low-abundance mRNAs from a single-protein sequence determination.  相似文献   

4.
Ec DOS, a heme-regulated phosphodiesterase from Escherichia coli, is composed of an N-terminal heme-bound PAS domain and a C-terminal phosphodiesterase domain. The heme redox state in the PAS domain regulates Ec DOS phosphodiesterase activity. Interestingly, the isolated heme-bound PAS fragment enhances phosphodiesterase activity of full-length Ec DOS. The enhancement is also regulated by the heme redox state of the isolated PAS domain. In the present study, we used a newly developed protein microarray system to examine the relationship between catalytic activity and the interaction of full-length Ec DOS and the isolated PAS fragment. Adenosine 3',5'-cyclic monophosphate (cAMP), a substrate of the Ec DOS phosphodiesterase, was found to be indispensable for the interaction between Ec DOS and the PAS fragment, and two phosphodiesterase inhibitors, 3-isobutyl-methyl-xanthine and etazolate hydrochloride, hindered the interaction. In addition, an enzyme with a mutation in the putative cAMP-binding sites (H590 and H594) was unable to interact with Ec DOS and lacked enzymatic activity. These results strongly suggest a close relationship between Ec DOS phosphodiesterase activity and interaction with the isolated PAS fragment. Therefore, this study provides insights into the mechanism of how the isolated PAS domain activates Ec DOS, which has important implications for the general role of the isolated PAS domain in cells. Moreover, we found that multiple microscale analyses using the protein microarray system had several advantages over conventional affinity column methods, including the quantity of protein needed, the sensitivity, the variability of immobilized protein, and the time required for the experiment.  相似文献   

5.
The Doctrine of Signatures (DOS) is found throughout the world. Most scholars dismiss it as a “primitive” or “prescientific” idea. Despite its long history, the doctrine has had little critical review. A careful evaluation of signatures suggests four things. (1) There is no evidence that morphological plant signatures ever led to the discovery of medicinal properties. Considering DOS in this manner is unproductive and largely untestable. (2) Signatures are post hoc attributions rather than a priori clues to the utility of medicinal plants. (3) It is productive to redefine signatures to include organoleptic properties associated with therapeutic value. Plants with strong odors or bitter tastes, for example, commonly are found in pharmacopoeias. (4) DOS should be considered for what it primarily is—a way of disseminating information. DOS fundamentally is a mnemonic and, therefore, is exceedingly valuable in traditional cultures.  相似文献   

6.
Heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) is a gas-sensor enzyme that hydrolyzes cyclic dinucleotide-GMP, and it is activated by O(2) or CO binding to the Fe(II) heme. In contrast to other well known heme-regulated gas-sensor enzymes or proteins, Ec DOS is not specific for a single gas ligand. Because Arg(97) in the heme distal side in Ec DOS interacts with the O(2) molecule and Met(95) serves as the axial ligand on the distal side of the Fe(II) heme-bound PAS domain of Ec DOS, we explored the effect of mutating these residues on the activity and gas specificity of Ec DOS. We found that R97A, R97I, and R97E mutations do not significantly affect regulation of the phosphodiesterase activities of the Fe(II)-CO and Fe(II)-NO complexes. The phosphodiesterase activities of the Fe(II)-O(2) complexes of the mutants could not be detected due to rapid autoxidation and/or low affinity for O(2). In contrast, the activities even of the gas-free M95A and M95L mutants were similar to that of the gas-activated wild-type enzyme. Interestingly, the activity of the M95H mutant was partially activated by O(2), CO, and NO. Spectroscopic analysis indicated that the Fe(II) heme is in the 5-coordinated high-spin state in the M95A and M95L mutants but that in the M95H mutant, like wild-type Ec DOS, it is in the 6-coordinated low-spin state. These results suggest that Met(95) coordination to the Fe(II) heme is critical for locking the system and that global structural changes around Met(95) caused by the binding of the external ligands or mutations at Met(95) releases the catalytic lock and activates catalysis.  相似文献   

7.
2-Deoxystreptamine (DOS)-containing aminoglycoside-aminocyclitol (AmAc) antibiotics represent the majority of clinically important AmAcs. Biosynthetic investigations of formation of DOS in actinomycetes are limited to the characterization of 2-deoxy-scyllo-inosose synthase, the first step enzyme of the DOS biosynthetic pathway. A gene encoding L-glutamine:2-deoxy-scyllo-inosose aminotransferase (tbmB) from the tobramycin producer Streptomyces tenebrarius was expressed heterologously in Escherichia coli. The conversions of 2-deoxy-scyllo-inosose to 2-deoxy-scyllo-inosamine and scyllo-inosose to scyllo-inosamine with the activity of TbmB were determined in vitro. The results indicate that tbmB catalyzes the second step of the DOS biosynthetic pathway during the biosynthesis of 2-deoxystreptamine, a subunit of tobramycin, in S. tenebrarius.  相似文献   

8.
Ovarian atrophy and reproductive tract incompetence are recognized consequences of the progressive expression of the overt, diabetes-obesity syndrome (DOS) in C57BL/KsJ (db/db) mutant mice. The present studies evaluated the progressive changes in ovarian cytoarchitecture, endocrine expression, and reproductive tract cytolipidemic parameters that promote reproductive failure and ovarian involution during the pre-onset, initial, progressive, and chronic expression stages of the DOS. Paired littermate control (normal: +/?) and diabetic (mutant: db/db) C57BL/KsJ females were selected for analysis of ovarian parameters at 2 weeks (pre-onset expression of DOS), 4 weeks (initial DOS expression), 8 weeks (progressive DOS: hyper-glycemic/lipidemic), and 16 weeks (overt/chronic DOS expression) of age. All 4- to 16-week-old (db/db) groups were obese, hyperglycemic, and hyperinsulinemic as compared with age-matched (+/?) controls. Prior to phenotypic expression of the DOS (2 week groups), ovarian interstitial cytolipidemia characterized the perifollicular and cortical regions of db/db tissue samples relative to +/? indices, while comparable body weight, blood glucose, as well as serum insulin and ovarian steroid hormone concentrations characterized both the +/? and db/db groups. Overt DOS expression in the 4-week-old db/db groups was characterized by body obesity, systemic hyperglycemia-hyperinsulinemia, and extensive hypercytolipidemia of ovarian folliculothecal compartments, as well as enhanced tissue lipase activities. By 8 weeks of age, progressive hypercytolipidemia characterized interstitial, thecal, and follicular granulosa cell layers of db/db tissue samples concurrent with suppressed ovarian steroid hormone production, enhanced lipid sequestration, and exacerbation of systemic hyper-glycemia/insulinemia. By 16 weeks of age, the chronic-DOS was characterized by extensive ovarian follicular involution, cortical perivascular hyperlipidemic infiltration, thecal cell atrophy, and follicular granulosa lipid imbibition. These data indicate that db/db mutation-induced ovarian structural and functional involution is a direct reflection of the cellular metabolic shift towards lipogenesis, indicated by the progressive cytoarchitectural transformation into adipocyte-like entities. The cytological indications of cellular metabolic compromise, which precede the phenotypic expression of the DOS indices, suggests that correction of these abnormal shifts in ovarian endocrine and cellular metabolism may restore, delay, or prevent the further compromise of ovarian function by db/db mutation expression.  相似文献   

9.
Malaria a global pandemic has engulfed nearly 0.63 million people globally. It is high time that a cure for malaria is required to stop its ever increasing menace. Our commentary discusses the advent and contribution of diversity oriented synthesis (DOS) in the drug discovery efforts towards developing cure for malaria. DOS based on chemical genetics focusses on design and synthesis of molecular libraries which covers large tracts of biologically relevant chemical space. Herein we will discuss the applications, advantages, disadvantages and future directions of DOS with respect to malaria.  相似文献   

10.
Poreless sensilla with inflexible sockets   总被引:2,自引:0,他引:2  
Poreless sensilla (np-sensilla) on the antennae of 18 species from 9 insect orders, and on the maxillary palps of Periplaneta americana were investigated using chemo- and cryofixation. The number of np-sensilla is low. Common features of these sensilla are: (a) the presence of a peg, (b) the lack of pores that lead to the dendritic outer segments (DOS), (c) the lack of socket structures, which would indicate flexibility, and (d) the presence of three types of sensory cells. The type-1 sensory cells are characterized by large DOS, which proceed into the peg where they fit tightly to its wall. As a rule, two DOS are present, being arranged in bilateral symmetry. Within them, in two species, a pattern of microtubules similar to that of a tubular body was observed. In the type-2 sensory cells, the DOS end beneath the peg and mostly display membrane invaginations. In the type-3 sensory cell, the DOS is an unmodified 9 X 2 + 0 cilium. Electrophysiological investigation of the np-sensillum in the maxillary palp of Periplaneta showed the presence of a hygro- and/or thermoreceptor. In a comparison of np-sensilla with an inflexible socket in different insect species, it is shown that these sensilla represent one fundamental sensillum type and that their structural features can be regarded as adaptations to hygro- and thermoreception.  相似文献   

11.
A protein containing a heme-binding PAS (PAS is from the protein names in which imperfect repeat sequences were first recognized: PER, ARNT, and SIM) domain from Escherichia coli has been implied a direct oxygen sensor (Ec DOS) enzyme. In the present study, we isolated cDNA for the Ec DOS full-length protein, expressed it in E. coli, and examined its structure-function relationships for the first time. Ec DOS was found to be tetrameric and was obtained as a 6-coordinate low spin ferric heme complex. Its alpha-helix content was calculated as 53% by CD spectroscopy. The redox potential of the heme was found to be +67 mV versus SHE. Mutation of His-77 of the isolated PAS domain abolished heme binding, whereas mutation of His-83 did not, suggesting that His-77 is one of the heme axial ligands. Ferrous, but not ferric, Ec DOS had phosphodiesterase (PDE) activity of nearly 0.15 min(-1) with cAMP, which was optimal at pH 8.5 in the presence of Mg(2+) and was strongly inhibited by CO, NO, and etazolate, a selective cAMP PDE inhibitor. Absorption spectral changes indicated tight CO and NO bindings to the ferrous heme. Therefore, the present study unequivocally indicates for the first time that Ec DOS exhibits PDE activity with cAMP and that this is regulated by the heme redox state.  相似文献   

12.
Diversity-oriented synthesis (DOS) is an emerging field involving the synthesis of combinatorial libraries of diverse small molecules for biological screening. Rather than being directed toward a single biological target, DOS libraries can be used to identify new ligands for a variety of targets. Several different strategies for library design have been developed to target the biologically relevant regions of chemical structure space. DOS has provided powerful probes to investigate biological mechanisms and also served as a new driving force for advancing synthetic organic chemistry.  相似文献   

13.
The organization of the 2-deoxystreptamine (DOS) biosynthetic gene cluster of Micromonospora echinospora has been determined. Sequencing of a 14.04 kb-region revealed twelve open reading frames (ORFs): four putative DOS biosynthetic genes (gtmA, B, C, and D), five amino sugars biosynthetic genes (gtmE, G, H, I, and gacB), two aminoglycoside resistance genes (gtmF and J) as well as a hypothetical ORF (gacA). One of the putative DOS biosynthetic genes, gtmA, was expressed in Escherichia coli, and the purified protein was shown to convert glucose-6-phosphate (G-6-P) to 2-deoxy-scyllo-inosose (DOI), a key step in DOS biosynthesis. In addition gtmJ was expressed in Streptomyces lividans and shown to confer gentamicin resistance. Thus gtmA and gtmJ are implicated in the biosynthesis of gentamicin and in resistance to it, respectively.  相似文献   

14.
The formation of kanamycin (KM) and KM-acetyltransferase (KAT) in washed cell suspensions of a strain of Streptomyces kanamyceticus was induced by 4-O-(6-aminoglycosyl)-2-deoxystreptamine, i.e. 6–AG–DOS, but repressed by 6-O-(3-aminoglycosyl)-DOS and KM, i.e. 3–AG–DOS and 6′–AG–DOS–3″–AG. The “feedback” inhibition of the formation of KM and KAT by KM was relieved by addition of 3–AG in the presence of 6–AG–DOS. Acetylation of 6–AG–DOS was supposed to be prerequisite for binding 3–AG. The activity of KAT in a cell-free extract was inhibited by inorganic phosphate, ADP, phosphoenolpyruvate, oxalacetate and malate. Citrate and oleate were available to the acetylation reaction as a substitute for acetate. Sclerin stimulated both formation and activity of KAT throughout the experiments mentioned above.  相似文献   

15.
DNA methylation of an imprinted control region (ICR) directs the allele-specific and reciprocal expression of the mouse H19 and the insulin-like growth factor 2 (Igf2) genes, mediated by controlling enhancer access. The ICR shows enhancer blocking activity through CTCF binding to an unmethylated sequence. The unmethylated state of the maternal ICR is maintained throughout development after establishment in the germ line; however, little is known of the molecular mechanisms that regulate DNA methylation. Hence, in this study we show that a dyad Oct-binding sequence (DOS) in the ICR mediates the demethylation of low-density methylation but not hypermethylation and is required to maintain the unmethylated state against the tendency for de novo methylation within the ICR in the embryonic carcinoma cell line P19. Furthermore, we also reveal that the unmethylated state of at least one CTCF-binding site within the ICR is under the control of DOS. Our results suggest that the ICR, as a CTCF-dependent insulator, requires DOS as well as CTCF-binding sites and that DOS maintains the maternal specific unmethylated state of the ICR at postimplantation stages.  相似文献   

16.
The heme environments of Met(95) and His(77) mutants of the isolated heme-bound PAS domain (Escherichia coli DOS PAS) of a direct oxygen sensing protein from E. coli (E. coli DOS) were investigated with resonance Raman (RR) spectroscopy and compared with the wild type (WT) enzyme. The RR spectra of both the reduced and oxidized WT enzyme were characteristic of six-coordinate low spin heme complexes from pH 4 to 10. The time-resolved RR spectra of the photodissociated CO-WT complex had an iron-His stretching band (nu(Fe-His)) at 214 cm(-1), and the nu(Fe-CO) versus nu(CO) plot of CO-WT E. coli DOS PAS fell on the line of His-coordinated heme proteins. The photodissociated CO-H77A mutant complex did not yield the nu(Fe-His) band but gave a nu(Fe-Im) band in the presence of imidazole. The RR spectrum of the oxidized M95A mutant was that of a six-coordinate low spin complex (i.e. the same as that of the WT enzyme), whereas the reduced mutant appeared to contain a five-coordinate heme complex. Taken together, we suggest that the heme of the reduced WT enzyme is coordinated by His(77) and Met(95), and that Met(95) is displaced by CO and O(2). Presumably, the protein conformational change that occurs upon exchange of an unknown ligand for Met(95) following heme reduction may lead to activation of the phosphodiesterase domain of E. coli DOS.  相似文献   

17.
In order to understand heme environment of a heme-regulated phosphodiesterase (Ec DOS), the binding behavior of cyanide to the Fe (III) complex was examined. Interestingly, the rate of cyanide binding to full-length Ec DOS was unusually slow with k(on)=0.0022mM(-1)s(-1), while the rate for the isolated heme domain of Ec DOS (0.045mM(-1)s(-1)) was 20-fold higher. Ala and Leu mutations at Met95, which has been suggested to be a heme axial ligand, increased the k(on) rate 11- and 8-fold, respectively, and dramatically decreased the cyanide dissociation rate from the isolated heme domain. His mutation at Met95, on the other hand, caused a 17-fold decrease in the k(on) value. We discuss the unusual cyanide binding behavior and the role of Met95 in controlling cyanide binding.  相似文献   

18.
Studies of the interaction between phenol and intrinsic graphene, as well as phenol and aluminum doped graphene layer are performed using first principles total energy calculations within the periodic density functional theory. A 4x4 periodic structure is used to explore the adsorption of a phenol molecule on the intrinsic graphene and on aluminum doped graphene layer. The electron-ion interactions are modeled using ultra-soft pseudo-potentials, and the exchange-correlation energies are treated according to the generalized gradient approximation (GGA) with the PBE parameterization. We consider different molecule orientations: parallel and perpendicular to the graphene layer to relax the atomic structure. To explain the optimized atomic geometry we determine binding energies for all cases and the density of states (DOS) and partial DOS for the most relevant configurations. Results indicate that the direct interaction of oxygen with aluminum yields the ground state geometry with the phenol molecule adsorbed on the graphene layer. Binding energies and DOS structures also demonstrate that the ground state configuration is that where the O and Al atoms interact with a separation distance of 1.97 ?.  相似文献   

19.
20.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号