首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Californian Channel Islands are near–shore islands with high levels of endemism, but extensive habitat loss has contributed to the decline or extinction of several endemic taxa. A key parameter for understanding patterns of endemism and demography in island populations is the magnitude of inter–island dispersal. This paper estimates the extent of migration and genetic differentiation in three extant and two extinct populations of Channel Island song sparrows (Melospiza melodia graminea). Inter–island differentiation was substantial (G''''ST: 0.14–0.37), with San Miguel Island having the highest genetic divergence and lowest migration rates. Santa Rosa and Santa Cruz Island populations were less diverged with higher migration rates. Genetic signals of past population declines were detected in all of the extant populations. The Channel Island populations were significantly diverged from mainland populations of M. m. heermanni (G''''ST: 0.30–0.64). Ten mtDNA haplotypes were recovered across the extant and extinct Channel Island population samples. Two of the ten haplotypes were shared between the Northern and Southern Channel Islands, with one of these haplotypes being detected on the Californian mainland. Our results suggest that there is little contemporary migration between islands, consistent with early explanations of avian biogeography in the Channel Islands, and that song sparrow populations on the northern Channel Islands are demographically independent.  相似文献   

2.
Little is known about how a 70% loss of native forests has affected the genetic connectivity of remnant bird populations in New Zealand. We use the common and widely distributed New Zealand Bellbird Anthornis melanura as an indicator species of population connectivity for well‐flighted birds. Using eight microsatellite loci, we identified five main genetic populations in the North Island, South Island, sub‐Antarctic Auckland Islands and two small remnant island populations adjacent to a large region of avian extirpations in northern North Island. Only one remnant island population, on a 30‐year‐old conservation reserve at Tiritiri Matangi, displayed a clear signature of recent genetic bottleneck. The 7% migration rate at Tiritiri Matangi indicates that bottlenecks can be maintained despite habitat rehabilitation, possibly through behavioural barriers to gene flow. Adjacent to the same extirpation zone, Bellbirds on the Poor Knights Islands were found to have low genetic diversity and low re‐colonization potential. Two gaps concordant with deforestation patterns separated the Kapiti Coast of southern North Island from populations to both the north and the south. In summary, we identified linked avian habitats, as well as isolated and inbred populations and suggest that Bellbirds are good re‐colonizers. We emphasize the importance of genetic studies that assess animal dispersal among newly rehabilitated habitat patches.  相似文献   

3.
The loggerhead shrike (Lanius ludovicianus), a songbird that hunts like a small raptor, maintains breeding populations on seven of the eight California Channel Islands. One of the two subspecies, L. l. anthonyi, was described as having breeding populations on six of the islands while a second subspecies, L. l. mearnsi, was described as being endemic to San Clemente Island. Previous genetic studies have demonstrated that the San Clemente Island loggerhead shrike is well differentiated genetically from both L. l. anthonyi and mainland populations, despite the fact that birds from outside the population are regular visitors to the island. Those studies, however, did not include a comparison between San Clemente Island shrikes and the breeding population on Santa Catalina Island, the closest island to San Clemente. Here we use mitochondrial control region sequences and nuclear microsatellites to investigate the population structure of loggerhead shrikes in the Channel Islands. We confirm the genetic distinctiveness of the San Clemente Island loggerhead shrike and, using Bayesian clustering analysis, demonstrate the presence and infer the source of the nonbreeding visitors. Our results indicate that Channel Island loggerhead shrikes comprise three distinct genetic clusters that inhabit: (i) San Clemente Island, (ii) Santa Catalina Island and (iii) the Northern Channel Islands and nearby mainland; they do not support a recent suggestion that all Channel Island loggerhead shrikes should be managed as a single entity.  相似文献   

4.
The restricted distribution and isolation of island endemics often produces unique genetic and phenotypic diversity of conservation interest to management agencies. However, these isolated species, especially those with sensitive life history traits, are at high risk for the adverse effects of genetic drift and habitat degradation by non-native wildlife. Here, we study the population genetic diversity, structure, and stability of a classic “island giant” (Xantusia riversiana, the Island Night Lizard) on San Clemente Island, California following the removal of feral goats. Using DNA microsatellites, we found that this population is reasonably genetically robust despite historical grazing, with similar effective population sizes and genetic diversity metrics across all sampling locations irrespective of habitat type and degree of degradation. However, we also found strong site-specific patterns of genetic variation and low genetic diversity compared to mainland congeners, warranting continued special management as an island endemic. We identify both high and low elevation areas that remain valuable repositories of genetic diversity and provide a case study for other low-dispersal coastal organisms in the face of future climate change.  相似文献   

5.
The Island Night Lizard (Xantusia riversiana) is endemic to three of the Channel Islands off the coast of California, USA. Introduced species such as goats, sheep, and cats have profoundly affected the fauna and flora of the islands for over 150 years, but most of these non-native species have been recently removed. We measured the distribution of genetic diversity in Island Night Lizards across San Nicolas Island using DNA microsatellites to assess the impacts of historical habitat change on effective population size, gene flow, and population divergence; to provide baseline data for future monitoring of genetic diversity; and to provide recommendations to inform the restoration of degraded habitat. Despite a history of profound anthropogenic habitat disturbance, genetic diversity was high within sites, and there was no evidence of population bottlenecks. Divergence between sites was extraordinarily high, as expected for this sedentary species. Landscape resistance modeling using circuit theory showed that unsuitable habitat is relatively permeable to gene flow compared to suitable habitat, and yet populations separated by very short geographic distances remain genetically distinct. We found no evidence of a need for short-term intervention such as artificial translocations to maintain genetic diversity. Instead, we suggest that management should focus on maintaining, improving, and increasing habitat, especially in creating patches of habitat to link existing sites.  相似文献   

6.
Efforts for the conservation of the endangered bat species Hipposideros turpis turpis in southern Japan are hampered by a lack of information about its biology and natural history and by the increasing effect of human activities. In an attempt to address some of the conservation challenges faced by this species, we studied the genetic structure and dispersal of intra- and interisland populations using six species-specific microsatellite markers. In particular, we sought to establish the relationship between island populations and to define effective management units for conservation. Pairwise co-ancestry index (F ST) analysis, analysis of molecular variance, and Bayesian clustering suggested the presence of significant genetic differentiation between islands but little differentiation within them. The small Yonaguni Island population appeared to be not only geographically isolated, but also genetically isolated. This population is at the greatest risk of extinction, considering its size and low genetic variation. The larger populations on Iriomote and Ishigaki Islands are genetically related to each other to a greater degree and exhibit higher genetic variation than the Yonaguni Island population. This suggests that these two island populations should be included in a single management unit, while bats from Yonaguni Island should be managed independently and given higher priority for conservation. Actions such as defining vegetation corridors between colonies, as well as building gates at the entrance of the largest known colony, should be included in the conservation agenda of this still poorly known species.  相似文献   

7.
Polymorphic nuclear microsatellite loci were used to characterize genetic variation in contemporary and historic populations of the San Clemente Island loggerhead shrike (Lanius ludovicianus mearnsi), an endangered bird with a current population of 30 individuals that is endemic to to one of the California Channel Islands. We also compared the population of the shrike with two contemporary populations of the still abundant subspecies, L. l. gambeli, which live 120 km away on the adjacent mainland. The current population of L. l. mearnsi has 60 per cent of the genetic variation of the mainland shrike populations and is strongly differentiated from them. Comparison of living birds with 19 birds collected in 1915 shows that most of the variation within the island population was lost before the recent 90 per cent decline in population size, and the 20 per cent decrease in variation this century is probably attributable to genetic drift. Mitochondrial DNA control region sequence data from 80 year old specimens show that there may have been limited introgression to L. l. mearnsi, this century, from another island subspecies, L. l. anthonyi, found in the northern Channel Islands. Today, gene flow between L. l. mearnsi and mainland L. l. gambel is very low, even though a few mainland birds visit the island annually. The island subspecies population has evolved sufficient genetic independence to justify ongoing conservation efforts to counter demographic collapse and genetic erosion; the course of genetic erosion can now be monitored non-invasively, as demonstrated by this study, based on DNA amplified from feathers.  相似文献   

8.
The Red‐headed Wood Pigeon Columba janthina nitens is endemic to the Ogasawara Islands, an oceanic island chain located 1000 km south of the main islands of Japan. The subspecies is at high risk of extinction because of its small population size and restricted habitat range. We undertook genetic analyses of this pigeon using sequences of a portion of the mitochondrial control region and five microsatellite markers to estimate the genetic characteristics of two wild populations from the Bonin and Volcano Islands, as well as one captive breeding population. The genetic diversity of the wild individuals was exceptionally low in both the mitochondria (nucleotide diversity = 0.00105) and at the microsatellite (3.2 alleles per locus and HE = 0.12) loci. Higher numbers of microsatellite genotypes were observed in the Volcano Islands population than in the Bonin Islands population, which may be because of the relatively low impact of human disturbance. The most common mitochondrial haplotypes and microsatellite alleles observed in the two wild populations were completely fixed in the captive population. Our results suggest that the genetic diversity of the captive population needs to be increased. However, introduction of a wild individual into a captive population can lead to a decreased genetic diversity in the wild population and therefore should be done with caution. The genetic differentiation between the Bonin and the Volcano island groups was low, and the populations of the two island groups should be regarded as a single evolutionarily significant unit. However, special consideration is required for habitat conservation in the Volcano Islands, which may be functioning as a sanctuary for the Red‐headed Wood Pigeon. For the long‐term conservation of threatened bird species that live on remote oceanic islands, determination of management units considering gene flow caused by their flying capacity and maintenance of genetically suitable wild and captive populations are essential.  相似文献   

9.

Preserving the genetic diversity of endangered species is fundamental to their conservation and requires an understanding of genetic structure. In turn, identification of landscape features that impede gene flow can facilitate management to mitigate such obstacles and help with identifying isolated populations. We conducted a landscape genetic study of the endangered salt marsh harvest mouse (Reithrodontomys raviventris), a species endemic to the coastal marshes of the San Francisco Estuary of California. We collected and genotyped?>?500 samples from across the marshes of Suisun Bay which contain the largest remaining tracts of habitat for the species. Cluster analyses and a population tree identified three geographically discrete populations. Next, we conducted landscape genetic analyses at two scales (the entire study area and across the Northern Marshes) where we tested 65 univariate models of landscape features and used the best supported to test multivariable analyses. Our analysis of the entire study area indicated that open water and elevation (>?2 m) constrained gene flow. Analysis of the Northern Marshes, where low elevation marsh habitat is more continuous, indicated that geographic distance was the only significant predictor of genetic distance at this scale. The identification of a large, connected population across Northern Marshes achieves a number of recovery targets for this stronghold of the species. The identification of landscape features that act as barriers to dispersal enables the identification of isolated and vulnerable populations more broadly across the species range, thus aiding conservation prioritization.

  相似文献   

10.

The Western Indian Ocean harbors one of the world’s most diverse marine biota yet is threatened by exploitation with few conservation measures in place. Primary candidates for conservation in the region are the Scattered Islands (Îles Éparses), a group of relatively pristine and uninhabited islands in the Mozambique Channel. However, while optimal conservation strategies depend on the degree of population connectivity among spatially isolated habitats, very few studies have been conducted in the area. Here, we use highly variable microsatellite markers from two damselfishes (Amphiprion akallopisos and Dascyllus trimaculatus) with differing life history traits [pelagic larval duration (PLD), adult habitat] to compare genetic structure and connectivity among these islands using classic population structure indices as well as Bayesian clustering methods. All classical fixation indexes F ST, R ST, GST, and Jost’s D show stronger genetic differentiation among islands for A. akallopisos compared to D. trimaculatus, consistent with the former species’ shorter PLD and stronger adult site attachment, which may restrict larval dispersal potential. In agreement with these results, the Bayesian analysis revealed clear genetic differentiation among the islands in A. akallopisos, separating the southern group (Bassas da India and Europa) from the center (Juan de Nova) and northern (Îles Glorieuses) islands, but not for D. trimaculatus. Local oceanographic patterns such as eddies that occur along the Mozambique Channel appear to parallel the results reported for A. akallopisos, but such features seem to have little effect on the genetic differentiation of D. trimaculatus. The contrasting patterns of genetic differentiation between species within the same family highlight the importance of accounting for diverse life history traits when assessing community-wide connectivity, an increasingly common consideration in conservation planning.

  相似文献   

11.
12.
Previous studies of the microarthropods of Marion Island, Southern Ocean, documented high mitochondrial COI (cytochrome c oxidase subunit I) haplotype diversity and significant genetic structure, which were ascribed to landscape subdivision. In this paper we revisit these ideas in light of new geomorphological evidence indicating a major lineament orientated along N26.5°E. Using the microarthropod Halozetes fulvus, we test the hypothesis that the eastern and western sides of the island show different population genetic patterns, corresponding to the previously unrecognized geological separation of these regions, and perhaps also with differences in climates across the island and further landscape complexity. Mitochondrial COI data were collected for 291 H. fulvus individuals from 30 localities across the island. Notwithstanding our sampling effort, haplotype diversity was under‐sampled as indicated by rarefaction analyses. Overall, significant genetic structure was found across the island as indicated by ΦST analyses. Nested clade phylogeographical analyses suggested that restricted gene flow (with isolation‐by‐distance) played a role in shaping current genetic patterns, as confirmed by Mantel tests. At the local scale, coalescent modelling revealed two different genetic patterns. The first, characterizing populations on the south‐western corner of the island, was that of low effective population size and high gene flow. The converse was found on the eastern side of Marion Island. Taken together, substantial differences in spatial genetic structure characterize H. fulvus populations across Marion Island, in keeping with the hypothesis that the complex history of the island, including the N26.5°E geological lineament, has influenced population genetic structure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 131–145.  相似文献   

13.
Together with reduction in habitat area and quality, reduction in habitat connectivity is one of the major factors influencing species’ persistence in fragmented landscapes. We explore the consequences of recent habitat fragmentation on volcanoes across Isabela Island, Galápagos by analyzing genetic patterns of populations of endemic weevils whose host plants have been depleted by indiscriminate goat grazing. We predicted that if grazing on the weevils’ host plants has caused habitat fragmentation on the weevils populations themselves, then the effects on the genetic architecture of populations should be more severe on Galapaganus conwayensis populations from volcanoes on Northern Isabela than on those from Santa Cruz or Pinta islands where vegetation destruction was not as extensive. We used mitochondrial sequences to reveal historical colonization patterns and microsatellite variation to understand more contemporary genetic changes. We found significantly lower microsatellite genetic diversity and population size within localities and increased genetic differentiation at a small geographic scale with a stronger isolation by distance pattern and larger numbers of genetic clusters on Isabela. In the absence of long-standing mitochondrial structure within each volcano, we interpret the microsatellite results as suggesting that recent host plant habitat fragmentation may indeed influence the genetic patterns of plant feeding insects and highlight the importance of controlling the spread of introduced herbivores in the Galápagos Islands.  相似文献   

14.
Comparative landscape genetics studies can provide key information to implement cost‐effective conservation measures favouring a broad set of taxa. These studies are scarce, particularly in Mediterranean areas, which include diverse but threatened biological communities. Here, we focus on Mediterranean wetlands in central Iberia and perform a multi‐level, comparative study of two endemic pond‐breeding amphibians, a salamander (Pleurodeles waltl) and a toad (Pelobates cultripes). We genotyped 411 salamanders from 20 populations and 306 toads from 16 populations at 18 and 16 microsatellite loci, respectively, and identified major factors associated with population connectivity through the analysis of three sets of variables potentially affecting gene flow at increasingly finer levels of spatial resolution. Topographic, land use/cover, and remotely sensed vegetation/moisture indices were used to derive optimized resistance surfaces for the two species. We found contrasting patterns of genetic structure, with stronger, finer scale genetic differentiation in Pleurodeles waltl, and notable differences in the role of fine‐scale patterns of heterogeneity in vegetation cover and water content in shaping patterns of regional genetic structure in the two species. Overall, our results suggest a positive role of structural heterogeneity in population connectivity in pond‐breeding amphibians, with habitat patches of Mediterranean scrubland and open oak woodlands (“dehesas”) facilitating gene flow. Our study highlights the usefulness of remotely sensed continuous variables of land cover, vegetation and water content (e.g., NDVI, NDMI) in conservation‐oriented studies aimed at identifying major drivers of population connectivity.  相似文献   

15.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

16.
  • Oceanic islands are dynamic settings that often promote within‐island patterns of strong population differentiation. Species with high colonisation abilities, however, are less likely to be affected by genetic barriers, but island size may impact on species genetic structure regardless of dispersal ability.
  • The aim of the present study was to identify the patterns and factors responsible for the structure of genetic diversity at the island scale in Phoenix canariensis, a palm species with high dispersal potential. To this end, we conducted extensive population sampling on the three Canary Islands where the species is more abundant and assessed patterns of genetic variation at eight microsatellite loci, considering different within‐island scales.
  • Our analyses revealed significant genetic structure on each of the three islands analysed, but the patterns and level of structure differed greatly among islands. Thus, genetic differentiation fitted an isolation‐by‐distance pattern on islands with high population densities (La Gomera and Gran Canaria), but such a pattern was not found on Tenerife due to strong isolation between colonised areas. In addition, we found a positive correlation between population geographic isolation and fine‐scale genetic structure.
  • This study highlights that island size is not necessarily a factor causing strong population differentiation on large islands, whereas high colonisation ability does not always promote genetic connectivity among neighbouring populations. The spatial distribution of populations (i.e. landscape occupancy) can thus be a more important driver of plant genetic structure than other island, or species′ life‐history attributes.
  相似文献   

17.
We examined resilience to extreme reduction of habitat, and long-term and long-distance isolation for an endemic species using California's Santa Barbara Island as a natural model. The island is smaller than 260ha, has been isolated by 40km of ocean from the nearest other island for more than 10,000 years and was severely impacted by human activities and feral browsers during at least the past 90 years. Less than 0.2km2 of native plant cover remains, yet seven apparently endemic plants and animals persist, including a moth, Argyrotaenia isolatissima (Tortricidae). Using mitochondrial DNA sequence we examined the levels of genetic divergence between the moth and its closest relatives on the other Channel Islands and the California mainland. A. isolatissima has 15bp differences, including one non-synonymous substitution, from the most closely related taxon, on San Nicolas Island. Both parsimony and likelihood-based molecular systematic analyses confirm the evolutionary independence of A. isolatissima and indicate that portions of an endemic flora and fauna may persist in small fragments, despite long-term isolation and disturbance. Habitat conservation planning may underestimate the value of very small, temporally and spatially isolated fragments of native habitat not only to maintain, but also to generate endemic biodiversity.  相似文献   

18.
The Mentawai and Batu Island groups off the west coast of Sumatra have a complicated geological and biogeographical history. The Batu Islands have shared a connection with the Sumatran ‘mainland’ during periods of lowered sea level, whereas the Mentawai Islands, despite being a similar distance from Sumatra, have remained isolated from Sumatra, and probably from the Batu Islands as well. These contrasting historical relationships to Sumatra have influenced the compositions of the respective mammalian faunas of these island groups. Treeshrews (Scandentia, Tupaiidae) from these islands have, at various times in their history, been recognized as geographically circumscribed populations of a broadly distributed Tupaia glis, subspecies, or distinct species. We used multivariate analyses of measurements from the skull and hands to compare the island populations from Siberut (Mentawai Islands) and Tanahbala (Batu Islands) with the geographically adjacent species from the southern Mentawai Islands (T. chrysogaster) and Sumatra (T. ferruginea). Results from both the skull and manus of the Siberut population show that it is most similar to T. chrysogaster, whereas the Tanahbala population is more similar to T. ferruginea, confirming predictions based on island history. These results are further corroborated by mammae counts. Based on these lines of evidence, we include the Siberut population in T. chrysogaster and the Tanahbala population in T. ferruginea. Our conclusions expand the known distributions of both the Mentawai and Sumatran species. The larger geographical range of the endangered T. chrysogaster has conservation implications for this Mentawai endemic, so populations and habitat should be re‐evaluated on each of the islands it inhabits. However, until such a re‐evaluation is conducted, we recommend that the IUCN Red List status of this species be changed from ‘Endangered’ to ‘Data Deficient’. Published 2013. This article is a U.S. Government work and is in the public domain in the USA, Biological Journal of the Linnean Society, 2014, 111 , 290–304.  相似文献   

19.
At small spatial and temporal scales, genetic differentiation is largely controlled by constraints on gene flow, while genetic diversity across a species' distribution is shaped on longer temporal and spatial scales. We assess the hypothesis that oceanographic transport and other seascape features explain different scales of genetic structure of giant kelp, Macrocystis pyrifera. We followed a hierarchical approach to perform a microsatellite‐based analysis of genetic differentiation in Macrocystis across its distribution in the northeast Pacific. We used seascape genetic approaches to identify large‐scale biogeographic population clusters and investigate whether they could be explained by oceanographic transport and other environmental drivers. We then modelled population genetic differentiation within clusters as a function of oceanographic transport and other environmental factors. Five geographic clusters were identified: Alaska/Canada, central California, continental Santa Barbara, California Channel Islands and mainland southern California/Baja California peninsula. The strongest break occurred between central and southern California, with mainland Santa Barbara sites forming a transition zone between the two. Breaks between clusters corresponded approximately to previously identified biogeographic breaks, but were not solely explained by oceanographic transport. An isolation‐by‐environment (IBE) pattern was observed where the northern and southern Channel Islands clustered together, but not with closer mainland sites, despite the greater distance between them. The strongest environmental association with this IBE pattern was observed with light extinction coefficient, which extends suitable habitat to deeper areas. Within clusters, we found support for previous results showing that oceanographic connectivity plays an important role in the population genetic structure of Macrocystis in the Northern hemisphere.  相似文献   

20.
The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no‐take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well‐connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582–993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long‐term persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号