首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the role of alternatively activated macrophages in modulating the outcome of experimental cysticercosis caused by Taenia crassiceps, we investigated the effect of removal of alternatively activated macrophage by injecting clodronate-loaded liposomes into susceptible BALB/c mice. Following T. crassiceps infection, mice receiving PBS-loaded liposomes developed a dominant Th2-type response associated with the presence of alternatively activated macrophages together with antigen-specific hyporesponsiveness and high parasite burden. In contrast, similarly infected mice treated with clodronate-loaded liposomes mounted a mixed Th1/Th2-type response, reversed antigen-specific hyporesponsiveness and did not carry notable alternatively activated macrophage populations. These factors were associated with increased resistance to T. crassiceps cysticercosis. Interestingly, early AAM? depletion was enough to limit parasite growth. However, if macrophages were depleted late in the infection, no effect on parasite burden was observed. These findings demonstrate that alternatively activated macrophages play a critical role in mediating susceptibility to experimental cysticercosis in which their early recruitment may favor parasite survival.  相似文献   

2.
Larvae of the cestodes Taenia solium and Taenia crassiceps infect the central nervous system of humans. Taenia solium larvae in the brain cause neurocysticercosis, the leading cause of adult-acquired epilepsy worldwide. Relatively little is understood about how cestode-derived products modulate host neural and immune signalling. Acetylcholinesterases, a class of enzyme that breaks down acetylcholine, are produced by a host of parasitic worms to aid their survival in the host. Acetylcholine is an important signalling molecule in both the human nervous and immune systems, with powerful modulatory effects on the excitability of cortical networks. Therefore, it is important to establish whether cestode derived acetylcholinesterases may alter host neuronal cholinergic signalling. Here we make use of multiple techniques to profile acetylcholinesterase activity in different extracts of both Taenia crassiceps and Taenia solium larvae. We find that the larvae of both species contain substantial acetylcholinesterase activity. However, acetylcholinesterase activity is lower in Taenia solium as compared to Taenia crassiceps larvae. Further, whilst we observed acetylcholinesterase activity in all fractions of Taenia crassiceps larvae, including on the membrane surface and in the excreted/secreted extracts, we could not identify acetylcholinesterases on the membrane surface or in the excreted/secreted extracts of Taenia solium larvae. Bioinformatic analysis revealed conservation of the functional protein domains in the Taenia solium acetylcholinesterases, when compared to the homologous human sequence. Finally, using whole-cell patch clamp recordings in rat hippocampal brain slice cultures, we demonstrate that Taenia larval derived acetylcholinesterases can break down acetylcholine at a concentration which induces changes in neuronal signalling. Together, these findings highlight the possibility that Taenia larval acetylcholinesterases can interfere with cholinergic signalling in the host, potentially contributing to pathogenesis in neurocysticercosis.  相似文献   

3.
The kinetics of primary and secondary infections with Taenia crassiceps larvae and the effects of immune serum on T. crassiceps larvae were studied in BALB/c and BDF1 mice. In both strains of mice a substantial degree of resistance to reinfection comparable to that previously reported in C3H mice can be induced by subcutaneous injection of three larvae 3 weeks prior to intraperitoneal challenge infection. Both early immune damage in the absence of adherent host cells and encapsulation by host cells are involved in rejection of larvae by BALB/c and BDF1 mice, but in both of these strains early immune damage is less pronounced and the cellular encapsulation response considerably more prominent than in the C3H mice studied previously. This difference is also reflected in the effect of immune serum on T. crassiceps metacestodes in vitro: immune serum from BALB/c and BDF1 mice is less effective than immune serum taken from C3H mice at comparable times after challenge infection in mediating damage to T. crassiceps larvae in vitro in the absence of host cells. These results suggest that genetically determined differences in immune capability can alter the state of equilibrium existing among different immune effector mechanisms without producing measurable effects upon overall host resistance to reinfection.  相似文献   

4.
Serum levels of IgM, IgA, IgG1, IgG2a, IgG2b, and IgG3 were measured weekly for 8 weeks by radial immunodiffusion in pooled sera from female BALB/c and BDF1 mice with primary and secondary Taenia crassiceps infections and age-matched normal control mice of each strain. Although increases in levels of all immunoglobulin classes occurred during primary and secondary infections in both strains of mice, the only consistent changes common to both strains of mice were higher levels of IgG1 and IgG3 in early weeks of secondary infections as compared to primary infections, and high levels of IgG1 late in primary infections. High levels of IgG3 occurred late in primary infections in BDF1 mice but not in BALB/c mice. It was not possible to correlate increased levels of any one immunoglobulin class either with cytotoxic activity of early immune serum or with the onset of the cellular encapsulation response in secondary infections. IgM, IgA, IgG1, IgG2a, IgG2b, and IgG3 could be demonstrated on the surface of washed fixed larvae from long-term infected donor mice by the indirect fluorescent antibody method. Living T. crassiceps larvae were capable of shedding fluorescent label within 1 hr at room temperature, but not at 4 C after staining with either rabbit anti-T. crassiceps serum or rabbit anti-mouse immunoglobulin serum and fluorescein-conjugated goat anti-rabbit globulin.  相似文献   

5.
Information concerning TLR-mediated antigen recognition and regulation of immune responses during helminth infections is scarce. TLR2 is a key molecule required for innate immunity and is involved in the recognition of a wide range of viruses, bacteria, fungi and parasites. Here, we evaluated the role of TLR2 in a Taenia crassiceps cysticercosis model. We compared the course of T. crassiceps infection in C57BL/6 TLR2 knockout mice (TLR2-/-) with that in wild type C57BL/6 (TLR2+/+) mice. In addition, we assessed serum antibody and cytokine profiles, splenic cellular responses and cytokine profiles and the recruitment of alternatively activated macrophages (AAMφs) to the site of the infection. Unlike wild type mice, TLR2-/- mice failed to produce significant levels of inflammatory cytokines in either the serum or the spleen during the first two weeks of Taenia infection. TLR2-/- mice developed a Th2-dominant immune response, whereas TLR2+/+ mice developed a Th1-dominant immune response after Taenia infection. The insufficient production of inflammatory cytokines at early time points and the lack of Th1-dominant adaptive immunity in TLR2-/- mice were associated with significantly elevated parasite burdens; in contrast, TLR2+/+ mice were resistant to infection. Furthermore, increased recruitment of AAMφs expressing PD-L1, PD-L2, OX40L and mannose receptor was observed in TLR2-/- mice. Collectively, these findings indicate that TLR2-dependent signaling pathways are involved in the recognition of T. crassiceps and in the subsequent activation of the innate immune system and production of inflammatory cytokines, which appear to be essential to limit infection during experimental cysticercosis.  相似文献   

6.
Many examples of reciprocal endocrine interactions between parasites and hosts have been found in insects, arthropods and mammals. Cysticercosis produced by Taenia solium metacestodes is a widely distributed parasite infection that affects the human and the pig. Taenia crassiceps experimental murine cysticercosis has been used to explore the role of biological factors involved in host–parasite interactions. We had shown that T. crassiceps cysticercosis affects the serum concentration of steroid hormones and the reproduction behavior of the male mice host. In an effort to understand the biology of the parasite, we had investigated the parasite capacity to produce sex steroids. For this purpose, T. crassiceps cysticerci were incubated in the presence of different steroid precursors. TLC and recrystallization procedures showed that testosterone is produced from 3H-androstenedione in cysticerci. The conversion of 3H-testosterone to androstenedione, although present is much less significant. In addition, we had studied the production of testosterone by T. solium cysticerci. For this purpose, cysticerci were dissected from pork meat and incubated as above described. The results showed that T. solium cysticerci also produce testosterone. We have speculated about the importance of androgens in the growth of T. crassiceps cysticerci and found that the addition of the antiandrogen flutamide to the culture media of the parasites significantly decreased 3H-thymidine incorporation. We therefore hypothesized, that the ability of cysticerci to produce testosterone from steroid precursors might be important for the parasite growth and development.  相似文献   

7.
Taenia solium cysticercosis is a major helminth zoonosis in developing countries. Pigs are the intermediate hosts mediating transmission of infection. Specific assays to diagnose living cysts in pigs are lacking. The monoclonal-based antigen detection ELISA is genus-specific and cross-reactions with Taenia hydatigena hamper the use of this test to screen pigs. We, therefore, aimed to introduce nanobodies, camelid-derived single-domain antibodies specific for T. solium cysticercosis, to develop unambiguous tests. Nanobodies were cloned following immunization of two dromedaries with T. solium antigen and eight T. solium-specific nanobodies were selected after phage display. Their binding characteristics and potential for the diagnosis of porcine cysticercosis were investigated. The nanobodies do not cross-react with T. hydatigena, Taenia saginata, Taenia crassiceps or Trichinella spiralis and were categorized into four epitope-binding groups. The target protein was identified as 14 kDa diagnostic glycoprotein (Ts14), but the nanobodies also reacted with other proteins of the same family. Nanobodies were tested in a sandwich ELISA with cyst fluid, and one particular nanobody detected its cognate serum antigens in a species-specific inhibition ELISA. Considering their beneficial production and stability properties, these highly specific nanobodies constitute a promising tool to diagnose cysticercosis after further improvement of the sensitivity and future assay validation.  相似文献   

8.
The effect of the dehydroepiandrosterone analog 16α-bromoepiandrosterone (EpiBr) was tested on the tapeworm Taenia crassiceps and the protist Entamoeba histolytica, both in vivo and in vitro. Administration of EpiBr prior to infection with cysticerci in mice reduced the parasite load by 50% compared with controls. EpiBr treatment induced 20% reduction on the development of amoebic liver abscesses in hamsters. In vitro treatment of T. crassiceps and E. histolytica cultures with EpiBr, reduced reproduction, motility and viability in a dose- and time-dependent fashion. These results leave open the possibility of assessing the potential of this hormonal analog as a possible anti-parasite drug, including cysticercosis and amoebiasis.  相似文献   

9.
Toxoplasma gondii is a pathogenic agent responsible for causing both systemic and local disease which elicits a typically pro-inflammatory, Th1 immune response. Taenia crassiceps antigen induces a Th2 immune response that immunomodulates Th1 based infections. Therefore the aim of this study was to evaluate whether T. crassiceps cysticerci antigens are able to modulate the inflammatory response triggered in experimental neurotoxoplasmosis (NT). BALB/c mice were inoculated with T. gondii cysts and/or cysticerci antigens and euthanized at 60 and 90 days after inoculation (DAI). The histopathology of the brains and cytokines produced by spleen cells culture were performed. The animals from the NT group, 90DAI (NT90), presented greater intensity of lesions such as vasculitis, meningitis and microgliosis and cytokines from Th1 profile characterized by high levels of IFN-gamma. While in the T. crassiceps antigens group, 60DAI, there were more discrete lesions and high levels of IL-4, a Th2 cytokine. In the NT co-inoculated with cysticerci antigens group the parenchyma lesions were more discrete with lower levels of IFN-gamma and higher levels of IL-4 when compared to NT90. Therefore the inoculation of T. crassiceps antigens attenuated the brain lesions caused by T. gondii inducing a Th2 immune response.  相似文献   

10.
Siebert A. E. Jr., Good A. H. & Simmons J. E. 1978. Kinetics of primary and secondary infections with Taenia crassiceps metacestodes (Zeder, 1800) Rudolphi, 1810 (Cestoda: Cyclophyllidea). International journal for Parasitology8: 39–43. When three T. crassiceps metacestodes were inoculated intraperitoneally in mice as a primary infection, approximately 50% of the larvae recovered during the first 4 weeks after inoculation were found to be dead, while in mice primed by previous subcutaneous inoculation, about 85% of the larvae died. Larvae which survived the first 4 weeks following primary intraperitoneal inoculation reproduced asexually by exogenous budding and produced viable infections within the host mice. But larvae in secondary infections were encapsulated by host granulomata, failed to reproduce asexually, and did not produce viable infections. In mice given intraperitoneal inoculations of seven, ten and twenty metacestodes, fewer larvae were killed and little encapsulation response was noted, though host cells were common at the budding region of the larvae. Such a biphasic host-response to the infection has not previously been reported for larval cestode infections, and the reduction in host response associated with increased worm burdens may indicate possible depression of the host immune system.  相似文献   

11.
Novak M. 1984. Cross-protection between the metacestodes of Mesocestoides corti and Taenia crassiceps in mice. International Journal for Parasitology14: 497–501. Infection with M. corti generated significant resistance against a challenge with T. crassiceps introduced either 2 or 6 weeks after primary infection. Challenge infection with T. crassiceps did not influence primary infection with M. corti. Infection with T. crassiceps protected significantly against challenge with M. corti given 2 weeks but not 6 weeks after the primary infection. Challenge infection with M. corti significantly suppressed primary infection with T. crassiceps.  相似文献   

12.
Racemose neurocysticercosis is an aggressive infection caused by the aberrant expansion of the cyst form of Taenia solium within the subarachnoid spaces of the human brain and spinal cord, resulting in the displacement of the surrounding host tissue and chronic inflammation. We previously demonstrated that the continued growth of the racemose bladder wall is associated with the presence of mitotically active cells but the nature and control of these proliferative cells are not well understood. Here, we demonstrated by immunofluorescence that the racemose cyst has an active mitogen-activated protein kinases (MAPK) signalling pathway that is inhibited after treatment with metformin, which reduces racemose cell proliferation in vitro, and reduces parasite growth in the murine model of Taenia crassiceps cysticercosis. Our findings indicate the importance of insulin receptor-mediated activation of the MAPK signalling pathway in the proliferation and growth of the bladder wall of the racemose cyst and its susceptibility to metformin action. The antiproliferative action of metformin may provide a new therapeutic approach against racemose neurocysticercosis.  相似文献   

13.
It is well understood that helminth infections modulate the immune responses of their hosts but the mechanisms involved in this modulation are not fully known. Macrophages and dendritic cells appear to be consistently affected during this type of infection and are common target cells for helminth-derived molecules. In this report, we show that macrophages obtained from chronically Taenia crassiceps-infected mice displayed an impaired response to recombinant murine IFN-γ, but not to recombinant murine IL-4, as measured based on the phosphorylation of STAT1 and STAT6, respectively. These macrophages expressed high levels of SOCS3. However, the inhibition of phosphatase activity by orthovanadate restored the IFN-γ response of these macrophages by increasing STAT1 phosphorylation without affecting SOCS3 expression. Therefore, we aimed to identify the phosphatases associated with IFN-γ signaling inhibition and found that macrophages from T. crassiceps-infected mice displayed enhanced SHP-1 expression. Interestingly, the exposure of naïve macrophages to T. crassiceps excreted/secreted products similarly interfered with IFN-γ-induced STAT1 phosphorylation. Moreover, macrophages exposed to T. crassiceps excreted/secreted products expressed high levels of SOCS3 as well as SHP-1. Strikingly, human peripheral blood mononuclear cells that were exposed to T. crassiceps excreted/secreted products in vitro also displayed impaired STAT1 phosphorylation in response to IFN-γ; again, phosphatase inhibition abrogated the T. crassiceps excreted/secreted product-altered IFN-γ signaling. These data demonstrate a new mechanism by which helminth infection and the products derived during this infection target intracellular pathways to block the response to inflammatory cytokines such as IFN-γ in both murine and human cells.  相似文献   

14.
Using a murine model of cysticercosis caused by the Taenia crassiceps ORF strain, we developed a fluorescent quantitative evaluation of the action of two well known anti-helminthic drugs: albendazole sulfoxide and praziquantel. The fluorescence emitted by a biotransformed CellTracker Probe known as CellTracker Green CMFDA in the vesicular fluids of cysticerci was estimated, and the results were compared with macroscopic observations of the parasites. The pharmacological EC50 value of each drug and changes in the level of biotransformation of the fluorescent tracker caused by the drugs could be easily calculated. These drug-induced changes in biotransformation could be related to changes in the GSH/GSSG ratio of parasites. Both the cysticercosis murine model and the CMFDA biotransformation assay could be used as an in vitro screening method to evaluate potential or well known cysticidal drugs.  相似文献   

15.
Racemose neurocysticercosis is an aggressive disease caused by the aberrant expansion of the cyst form of Taenia solium within the subarachnoid spaces of the human brain and spinal cord resulting in a mass effect and chronic inflammation. Although expansion is likely caused by the proliferation and growth of the parasite bladder wall, there is little direct evidence of the mechanisms that underlie these processes. Since the development and growth of cysts in related cestodes involves totipotential germinative cells, we hypothesized that the expansive growth of the racemose larvae is organized and maintained by germinative cells. Here, we identified proliferative cells expressing the serine/threonine-protein kinase plk1 by in situ hybridization. Proliferative cells were present within the bladder wall of racemose form and absent from the homologous tissue surrounding the vesicular form. Cyst proliferation in the related model species Taenia crassiceps (ORF strain) occurs normally by budding from the cyst bladder wall and proliferative cells were concentrated within the growth buds. Cells isolated from bladder wall of racemose larvae were established in primary cell culture and insulin stimulated their proliferation in a dose-dependent manner. These findings indicate that the growth of racemose larvae is likely due to abnormal cell proliferation. The different distribution of proliferative cells in the racemose larvae and their sensitivity to insulin may reflect significant changes at the cellular and molecular levels involved in their tumor-like growth. Parasite cell cultures offer a powerful tool to characterize the nature and formation of the racemose form, understand the developmental biology of T. solium, and to identify new effective drugs for treatment.  相似文献   

16.
Glycoproteins from the total vesicular fluid of Taenia crassiceps (VF-Tc) were prepared using three different purification methods, consisting of ConA-lectin affinity chromatography (ConA-Tc), preparative electrophoresis (SDS-PAGE) (14gp-Tc), and monoclonal antibody immunoaffinity chromatography (18/14-Tc). The complex composition represented by the VF-Tc and ConA-Tc antigens revealed peptides ranging from 101- to 14-kDa and from 92- to 12-kDa, respectively. Immunoblotting using lectins confirmed glucose/mannose (glc/man) residues in the 18- and 14-kDa peptides, which are considered specific and immunodominant for the diagnosis of cysticercosis, and indicated that these fractions are glycoproteins. Serum antibodies from a patient with neurocysticercosis that reacted to the 14gp band from T. crassiceps (Tc) were eluted from immunoblotting membranes and showed reactivity to 14gp from Taenia solium. In order to determine the similar peptide sequence, the N-terminal amino acid was determined and analyzed with sequences available in public databases. This sequence revealed partial homology between T. crassiceps and T. solium peptides. In addition, mass spectrometry along with theoretical Mr and pI of the 14gp-Tc point suggested a close relationship to some peptides of a 150-kDa protein complex of the T. solium previously described. The identification of these common immunogenic sites will contribute to future efforts to develop recombinant antigens and synthetic peptides for immunological assays.  相似文献   

17.
Helminth infections induce strong immunoregulation that can modulate subsequent pathogenic challenges. Taenia crassiceps causes a chronic infection that induces a Th2-biased response and modulates the host cellular immune response, including reduced lymphoproliferation in response to mitogens, impaired antigen presentation and the recruitment of suppressive alternatively activated macrophages (AAMФ). In this study, we aimed to evaluate the ability of T. crassiceps to reduce the severity of experimental autoimmune encephalomyelitis (EAE). Only 50% of T. crassiceps-infected mice displayed EAE symptoms, which were significantly less severe than uninfected mice. This effect was associated with both decreased MOG-specific splenocyte proliferation and IL-17 production and limited leukocyte infiltration into the spinal cord. Infection with T. crassiceps induced an anti-inflammatory cytokine microenvironment, including decreased TNF-α production and high MOG-specific production of IL-4 and IL-10. While the mRNA expression of TNF-α and iNOS was lower in the brain of T. crassiceps-infected mice with EAE, markers for AAMФ were highly expressed. Furthermore, in these mice, there was reduced entry of CD3+Foxp3 cells into the brain. The T. crassiceps-induced immune regulation decreased EAE severity by dampening T cell activation, proliferation and migration to the CNS.  相似文献   

18.
Cysticerci of Taenia crassiceps were administered to mice by gavage to determine whether enteral or parenteral infections would establish consistently. Some worms survived in the small intestine up to 16 days, whereas others penetrated through the gut wall into the peritoneal cavity within 24 hr. Similar proportions of different doses of worms reached the peritoneal cavity regardless of the size of the inoculum and sex or strain of mice used. In addiiton, it was shown that mice may acquire an intraperitoneal infection with T. crassiceps by eating the carcass of an infected mouse.  相似文献   

19.

Background

Cysticercosis and hydatidosis seriously affect human health and are responsible for considerable economic loss in animal husbandry in non-developed and developed countries. S3Pvac and EG95 are the only field trial-tested vaccine candidates against cysticercosis and hydatidosis, respectively. S3Pvac is composed of three peptides (KETc1, GK1 and KETc12), originally identified in a Taenia crassiceps cDNA library. S3Pvac synthetically and recombinantly expressed is effective against experimentally and naturally acquired cysticercosis.

Methodology/Principal Findings

In this study, the homologous sequences of two of the S3Pvac peptides, GK1 and KETc1, were identified and further characterized in Taenia crassiceps WFU, Taenia solium, Taenia saginata, Echinococcus granulosus and Echinococcus multilocularis. Comparisons of the nucleotide and amino acid sequences coding for KETc1 and GK1 revealed significant homologies in these species. The predicted secondary structure of GK1 is almost identical between the species, while some differences were observed in the C terminal region of KETc1 according to 3D modeling. A KETc1 variant with a deletion of three C-terminal amino acids protected to the same extent against experimental murine cysticercosis as the entire peptide. On the contrary, immunization with the truncated GK1 failed to induce protection. Immunolocalization studies revealed the non stage-specificity of the two S3Pvac epitopes and their persistence in the larval tegument of all species and in Taenia adult tapeworms.

Conclusions/Significance

These results indicate that GK1 and KETc1 may be considered candidates to be included in the formulation of a multivalent and multistage vaccine against these cestodiases because of their enhancing effects on other available vaccine candidates.  相似文献   

20.
A single oral treatment with mebendazole for the control of Taenia crassiceps larval infections in rats. International Journal for Parasitology9: 73–76. Rats infected with Taenia crassiceps larvae were treated with mebendazole. At a sublethal dose level of 50 mg/kg, a single large oral treatment proved to be markedly more effective in killing cysts than the same amount of drug divided into 10 daily smaller doses. Levamisole promoted a vigorous host cellular response to the intraperitoneal cysts, but when incorporated with mebendazole, it did not enhance the action of the latter drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号