首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current rapid growth of Internet of Things (IoT) in various commercial and non-commercial sectors has led to the deposition of large-scale IoT data, of which the time-critical analytic and clustering of knowledge granules represent highly thought-provoking application possibilities. The objective of the present work is to inspect the structural analysis and clustering of complex knowledge granules in an IoT big-data environment. In this work, we propose a knowledge granule analytic and clustering (KGAC) framework that explores and assembles knowledge granules from IoT big-data arrays for a business intelligence (BI) application. Our work implements neuro-fuzzy analytic architecture rather than a standard fuzzified approach to discover the complex knowledge granules. Furthermore, we implement an enhanced knowledge granule clustering (e-KGC) mechanism that is more elastic than previous techniques when assembling the tactical and explicit complex knowledge granules from IoT big-data arrays. The analysis and discussion presented here show that the proposed framework and mechanism can be implemented to extract knowledge granules from an IoT big-data array in such a way as to present knowledge of strategic value to executives and enable knowledge users to perform further BI actions.  相似文献   

2.
Biological and medical diagnoses depend on high-quality measurements. A wearable device based on Internet of Things (IoT) must be unobtrusive to the human body to encourage users to accept continuous monitoring. However, unobtrusive IoT devices are usually of low quality and unreliable because of the limitation of technology progress that has slowed down at high peak. Therefore, advanced inference techniques must be developed to address the limitations of IoT devices. This review proposes that IoT technology in biological and medical applications should be based on a new data assimilation process that fuses multiple data scales from several sources to provide diagnoses. Moreover, the required technologies are ready to support the desired disease diagnosis levels, such as hypothesis test, multiple evidence fusion, machine learning, data assimilation, and systems biology. Furthermore, cross-disciplinary integration has emerged with advancements in IoT. For example, the multiscale modeling of systems biology from proteins and cells to organs integrates current developments in biology, medicine, mathematics, engineering, artificial intelligence, and semiconductor technologies. Based on the monitoring objectives of IoT devices, researchers have gradually developed ambulant, wearable, noninvasive, unobtrusive, low-cost, and pervasive monitoring devices with data assimilation methods that can overcome the limitations of devices in terms of quality measurement. In the future, the novel features of data assimilation in systems biology and ubiquitous sensory development can describe patients’ physical conditions based on few but long-term measurements.  相似文献   

3.
Cluster Computing - The usage of 5G-enabled IoT devices is rising exponentially as humans tend to shift towards a more automated lifestyle. A significant amount of IoT devices is expected to join...  相似文献   

4.

Many consumers participate in the smart city via smart portable gadgets such as wearables, personal gadgets, mobile devices, or sensor systems. In the edge computation systems of IoT in the smart city, the fundamental difficulty of the sensor is to pick reliable participants. Since not all smart IoT gadgets are dedicated, certain intelligent IoT gadgets might destroy the networks or services deliberately and degrade the customer experience. A trust-based internet of things (TM-IoT) cloud computing method is proposed in this research. The problem is solved by choosing trustworthy partners to enhance the quality services of the IoT edging network in the Smart architectures. A smart device choice recommendation method based on the changing networks was developed. It applied the evolutionary concept of games to examine the reliability and durability of the technique of trust management presented in this article. The reliability and durability of the trustworthiness-managing system, the Lyapunov concept was applied.A real scenario for personal-health-control systems and air-qualitymonitoring and assessment in a smart city setting confirmed the efficiency of the confidence-management mechanism. Experiments have demonstrated that the methodology for trust administration suggested in this research plays a major part in promoting multi-intelligent gadget collaboration in the IoT edge computer system with an efficiency of 97%. It resists harmful threads against service suppliers more consistently and is ideal for the smart world's massive IoT edge computer system.

  相似文献   

5.
Xu  Jianlong  Lin  Jian  Liang  Wei  Li  Kuan-Ching 《Cluster computing》2022,25(4):2515-2526
Cluster Computing - The integration of blockchain and the Internet of Things (IoT) is seen as having significant potential. In IoT Environments, Blockchain builds a trusted environment for IoT...  相似文献   

6.

The spread of the Internet of Things (IoT) is demanding new, powerful architectures for handling the huge amounts of data produced by the IoT devices. In many scenarios, many existing isolated solutions applied to IoT devices use a set of rules to detect, report and mitigate malware activities or threats. This paper describes a development environment that allows the programming and debugging of such rule-based multi-agent solutions. The solution consists of the integration of a rule engine into the agent, the use of a specialized, wrapping agent class with a graphical user interface for programming and testing purposes, and a mechanism for the incremental composition of behaviors. Finally, a set of examples and a comparative study were accomplished to test the suitability and validity of the approach. The JADE multi-agent middleware has been used for the practical implementation of the approach.

  相似文献   

7.

Real-time accurate traffic congestion prediction can enable Intelligent traffic management systems (ITMSs) that replace traditional systems to improve the efficiency of traffic and reduce traffic congestion. The ITMS consists of three main layers, which are: Internet of Things (IoT), edge, and cloud layers. Edge can collect real-time data from different routes through IoT devices such as wireless sensors, and then it can compute and store this collected data before transmitting them to the cloud for further processing. Thus, an edge is an intermediate layer between IoT and cloud layers that can receive the transmitted data through IoT to overcome cloud challenges such as high latency. In this paper, a novel real-time traffic congestion prediction strategy (TCPS) is proposed based on the collected data in the edge’s cache server at the edge layer. The proposed TCPS contains three stages, which are: (i) real-time congestion prediction (RCP) stage, (ii) congestion direction detection (CD2) stage, and (iii) width change decision (WCD) stage. The RCP aims to predict traffic congestion based on the causes of congestion in the hotspot using a fuzzy inference system. If there is congestion, the CD2 stage is used to detect the congestion direction based on the predictions from the RCP by using the Optimal Weighted Naïve Bayes (OWNB) method. The WCD stage aims to prevent the congestion occurrence in which it is used to change the width of changeable routes (CR) after detecting the direction of congestion in CD2. The experimental results have shown that the proposed TCPS outperforms other recent methodologies. TCPS provides the highest accuracy, precision, and recall. Besides, it provides the lowest error, with values equal to 95%, 74%, 75%, and 5% respectively.

  相似文献   

8.
Alsmadi  Izzat  Dwekat  Zyad  Cantu  Ricardo  Al-Ahmad  Bilal 《Cluster computing》2022,25(3):1563-1573
Cluster Computing - The Internet, and many of the related things, hence the term Internet of Things, IoT, continue to expand and take more roles in human lives. Indeed, this enables us to be...  相似文献   

9.
Internet of Things (IoT) is driving the development of new generation of sensors, communication components, and power sources. Ideally, IoT sensors and communication components are expected to be powered by sustainable energy source freely available in the environment. Here, a breakthrough in this direction is provided by demonstrating high output power energy harvesting from very low amplitude stray magnetic fields, which exist everywhere, through magnetoelectric (ME) coupled magneto‐mechano‐electric (MME) energy conversion. ME coupled MME harvester comprised of multiple layers of amorphous magnetostrictive material, piezoelectric macrofiber composite, and magnetic tip mass, interacts with an external magnetic field to generate electrical energy. Comprehensive experimental investigation and a theoretical model reveal that both the magnetic torque generated through magnetic loading and amplification of magneto‐mechanical vibration by ME coupling contributes toward the generation of high electrical power from the stray magnetic field around power cables of common home appliances. The generated electrical power from the harvester is sufficient for operating microsensors (gyro, temperature, and humidity sensing) and wireless data transmission systems. These results will facilitate the deployment of IoT devices in emerging intelligent infrastructures.  相似文献   

10.
热环境是城市生态系统最为关键的大气环境要素之一,开展城市热环境研究的前提是在时空维度上获取足量的热环境参数。利用先进的物联网技术构建了在线式热环境监测设备,收集2022年10月16日至24日广州大学校园气温、风速、太阳辐射和地面温度四种热环境参数,分析小尺度下城市热环境的时空变化特征。研究结果表明:1)不同测点之间的风速特征具有一定的相关性,极个别测点的风速特征与其它测点相关性仅在0.5左右,显示其小气候的独特性;2)不同测点风速和热岛强度变化时空差异明显,即使距离靠近的测点,受邻近建筑和植被特征的影响热环境特征会有所差异,各测点的日间风速大,热岛强度较为明显,夜间风速较小,热岛强度较弱;3)地面温度与气温的相关性达0.8左右,这种相关性在夜间表现更为密切,并且这种关系受风速的影响不大。研究结果反映了城市热环境参数在小尺度上的高度异质性,并揭示了物联网技术在城市热环境监测领域的可行性、便捷性和高效性。  相似文献   

11.

Fog-cloud computing is a promising distributed model for hosting ever-increasing Internet of Things (IoT) applications. IoT applications should meet different characteristics such as deadline, frequency rate, and input file size. Fog nodes are heterogeneous, resource-limited devices and cannot accommodate all the IoT applications. Due to these difficulties, designing an efficient algorithm to deploy a set of IoT applications in a fog-cloud environment is very important. In this paper, a fuzzy approach is developed to classify applications based on their characteristics then an efficient heuristic algorithm is proposed to place applications on the virtualized computing resources. The proposed policy aims to provide a high quality of service for IoT users while the profit of fog service providers is maximized by minimizing resource wastage. Extensive simulation experiments are conducted to evaluate the performance of the proposed policy. Results show that the proposed policy outperforms other approaches by improving the average response time up to 13%, the percentage of deadline satisfied requests up to 12%, and the resource wastage up to 26%.

  相似文献   

12.
Cluster Computing - Internet of Things (IoT) is one of the most powerful platforms that incorporates several other technological components within itself. The IoT ecosystem comprises devices,...  相似文献   

13.
Liang  Wenbing  Ji  Nan 《Cluster computing》2022,25(3):2203-2221
Cluster Computing - The Internet of Things (IoT) has infiltrated extensively into our lifestyles. Nevertheless, IoT privacy remains a significant obstacle, primarily because of the large size and...  相似文献   

14.
Alroobaea  Roobaea  Arul  Rajakumar  Rubaiee  Saeed  Alharithi  Fahd S.  Tariq  Usman  Fan  Xincan 《Cluster computing》2022,25(3):1805-1816
Cluster Computing - The Internet of Things (IoT) is made up of intelligent devices that interact with each other. It allows information to be gathered and shared by these devices. In addition, IoT...  相似文献   

15.
Li  Dong  Luo  Zai  Cao  Bo 《Cluster computing》2022,25(4):2585-2599

Blockchain technology is an undeniable ledger technology that stores transactions in high-security chains of blocks. Blockchain can solve security and privacy issues in a variety of domains. With the rapid development of smart environments and complicated contracts between users and intelligent devices, federated learning (FL) is a new paradigm to improve accuracy and precision factors of data mining by supporting information privacy and security. Much sensitive information such as patient health records, safety industrial information, and banking personal information in various domains of the Internet of Things (IoT) including smart city, smart healthcare, and smart industry should be collected and gathered to train and test with high potential privacy and secured manner. Using blockchain technology to the adaption of intelligent learning can influence maintaining and sustaining information security and privacy. Finally, blockchain-based FL mechanisms are very hot topics and cut of scientific edge in data science and artificial intelligence. This research proposes a systematic study on the discussion of privacy and security in the field of blockchain-based FL methodologies on the scientific databases to provide an objective road map of the status of this issue. According to the analytical results of this research, blockchain-based FL has been grown significantly during these 5 years and blockchain technology has been used more to solve problems related to patient healthcare records, image retrieval, cancer datasets, industrial equipment, and economical information in the field of IoT applications and smart environments.

  相似文献   

16.
Saidi  Ahmed  Nouali  Omar  Amira  Abdelouahab 《Cluster computing》2022,25(1):167-185

Attribute-based encryption (ABE) is an access control mechanism that ensures efficient data sharing among dynamic groups of users by setting up access structures indicating who can access what. However, ABE suffers from expensive computation and privacy issues in resource-constrained environments such as IoT devices. In this paper, we present SHARE-ABE, a novel collaborative approach for preserving privacy that is built on top of Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Our approach uses Fog computing to outsource the most laborious decryption operations to Fog nodes. The latter collaborate to partially decrypt the data using an original and efficient chained architecture. Additionally, our approach preserves the privacy of the access policy by introducing false attributes. Furthermore, we introduce a new construction of a collaboration attribute that allows users within the same group to combine their attributes while satisfying the access policy. Experiments and analyses of the security properties demonstrate that the proposed scheme is secure and efficient especially for resource-constrained IoT devices.

  相似文献   

17.
18.
《IRBM》2022,43(5):511-519
ObjectivesWith the rapid evolution and technology advancement, the healthcare sector is evolving day by day. It is taking advantage of different technologies such as Internet of things and Blockchain. Several applications related to daily healthcare activities are adopting the use of these technologies. In this paper, we present a review in which we group different healthcare applications that integrate the Internet of things and Blockchain in their systems.Material and methodsA review study about the integration of IoT and Blockchain in healthcare systems was conducted. We searched the databases ScienceDirect, IEEE Xplore, Google Scholar and ACM Digital Library.ResultsThis review focuses on categorizing the use cases of IoT and Blockchain in the healthcare sector. The study listed 6 applications in medical services, namely, remote patient monitoring, electronic medical records management, disease prediction, patient tracking, drug traceability and fighting infectious disease especially COVID-19. The paper also investigates the challenges associated with the adoption of the Blockchain technology in healthcare IoT-based systems and some of the existing solutions. It also introduces some future research directions.ConclusionThe survey of the use cases of IoT and Blockchain in the healthcare sector will serve as a state of the art for future researches. In addition, the paper gives some directions to new possible researches that could help to revolutionize the healthcare sector by using other technologies such as artificial intelligence, big data, fog and cloud computing.  相似文献   

19.
Extreme environmental events such as droughts affect millions of people all around the world. Although it is not possible to prevent this type of event, its prediction under different time horizons enables the mitigation of eventual damages caused by its occurrence. An important variable for identifying occurrences of droughts is the sea surface temperature (SST). In the tropical Atlantic Ocean, SST data are collected and provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) project, which is an observation network composed of sensor buoys arranged in this region. Sensors of this type, and more generally Internet of Things (IoT) sensors, commonly lead to data losses that influence the quality of datasets collected for adjusting prediction models. In this paper, we explore the influence of temporal aggregation in predicting step-ahead SST considering different prediction horizons and different sizes for training datasets. We have conducted several experiments using data collected by PIRATA project. Our results point out scenarios for training datasets and prediction horizons indicating whether or not temporal aggregated SST time series may be beneficial for prediction.  相似文献   

20.
Energy harvesting from extremely low frequency magnetic fields using magneto‐mechano‐electric (MME) harvesters enables wireless power transfer for operating Internet of Things (IoT) devices. The MME harvesters are designed to resonate at a fixed frequency by absorbing AC magnetic fields through a composite cantilever comprising of piezoelectric and magnetostrictive materials, and a permanent magnetic tip mass. However, this harvester architecture limits power generation because volume of the magnetic end mass is closely coupled with the resonance frequency of the device structure. Here, a method is demonstrated for maintaining the resonance frequency of the MME harvesters under all operating conditions (e.g., 60 Hz, standard frequency of electricity in many countries) while simultaneously enhancing the output power generation. By distributing the magnetic mass over the beam, the output power of the harvester is significantly enhanced at a constant resonance frequency. The MME harvester with distributed forcing shows 280% improvement in the power generation compared with a traditional architecture. The generated power is shown to be sufficient to power eight different onboard sensors with wireless data transmission integrated on a drone. These results demonstrate the promise of MME energy harvesters for powering wireless communication and IoT sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号