首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s).  相似文献   

2.
Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host.  相似文献   

3.
Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease.  相似文献   

4.
Chronic helminth infections such as filariasis in human hosts can be life long, since parasites are equipped with a repertoire of immune evasion strategies. In many areas where helminths are prevalent, other infections such as malaria are co-endemic. It is still an ongoing debate, how one parasite alters immune responses against another. To dissect the relationships between two different parasites residing in the same host, we established a murine model of co-infection with the filarial nematode Litomosoides sigmodontis and the malaria parasite Plasmodium berghei (ANKA strain). We found that filarial infection of BALB/c mice leads to protection against a subsequent P. berghei sporozoite infection in one-third of co-infected mice, which did not develop blood-stage malaria. This finding did not correlate with adult worm loads, however it did correlate with the presence of microfilariae in blood. Interestingly, protection was abrogated in IL-10-deficient mice. Thus, murine filariasis, in particular when it is a patent infection, is able to modify the immunological balance to induce protection against an otherwise deadly Plasmodium infection and is therefore able to influence the course of malaria in favour of the host.  相似文献   

5.
6.
7.
CBA mice which had recovered from infection with Trypanosoma musculi were immune to challenge with all strains of the homologous species that were tested but were still full susceptible to challenge with T. cruzi, T. brucei or T. evansi. A heavy challenge inoculum of T. musculi was cleared rapidly from the blood of mice which had recently recovered from infection but, in mice which had recovered 11 months earlier, the parasitaemia changed very little for 3–4 days but then fell abruptly within a few hours. Immunization with a parasite extract in multiple emulsion conferred a strong though not complete protection against homologous challenge.Serum from mice which had recovered from infection had a marked neutralizing effect in vitro on the infectivity of the homologous parasites although the numbers of live organisms were not reduced during the period of in vitro incubation. The test did not reveal antigenic differences among three isolates of the parasite.A summary is given of the sequence of events that is thought to make up the immune response of mice to T. musculi.  相似文献   

8.
9.
Leishmania chagasi and Leishmania amazonensis are the etiologic agents of different clinical forms of human leishmaniasis in South America. In an attempt to select candidate antigens for a vaccine protecting against different Leishmania species, the efficacy of vaccination using Leishmania ribosomal proteins and saponin as adjuvant was examined in BALB/c mice against challenge infection with both parasite species. Mice vaccinated with parasite ribosomal proteins purified from Leishmania infantum plus saponin showed a specific production of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with L. infantum ribosomal proteins. Vaccinated mice showed a reduction in the liver and spleen parasite burdens after L. chagasi infection. After L. amazonensis challenge, vaccinated mice showed a decrease of the dermal pathology and a reduction in the parasite loads in the footpad and spleen. In both models, protection was correlated to an IL-12-dependent production of IFN-γ by CD4+ and CD8+ T cells that activate macrophages for the synthesis of NO. In the protected mice a decrease in the parasite-mediated IL-4 and IL-10 responses was also observed. In mice challenged with L. amazonensis, lower levels of anti-parasite-specific antibodies were detected. Thus, Leishmania ribosomal proteins plus saponin fits the requirements to compose a pan-Leishmania vaccine.  相似文献   

10.
McHardy N. and Elphick J. P. 1978. Immunization of mice against infection with Trypanosoma cruzi. Cross-immunization between five strains of the parasite using freeze-thawed vaccines containing epimastigotes of up to five strains. International Journal for Parasitology8: 25–31. Groups of male CD-1 mice were immunized with two doses of vaccines containing 108 freeze-thawed cultured epimastigotes of Trypanosoma cruzi of five strains—Y, M, BG, Peru and Tulahuen, with saponin as adjuvant. Each vaccine contained 1, 2, 3 or 5 strains of the parasite. The mice were challenged with each of the five strains. All the single-strain vaccines gave good protection against both homologous and heterologous challenges, with the exception of the strain Y vaccine, which gave poor protection against homologous challenge, but good protection against all four heterologous challenges. The inclusion of more than one strain of epimastigote in the vaccine failed to increase protection, and in some instances appeared to reduce it, in comparison with vaccines containing only one of the component strains. It is suggested that this is due to antigenic competition.  相似文献   

11.
Mice concurrently infected with the rodent piroplasms Babesia hylomysci or B. microti during a primary infection with the nematode Trichuris muris showed marked immunodepression, and the normal immune expulsion of the nematode was delayed. Immunodepression was most severe when the Babesia infections reached peak parasitaemia during the preexpulsion phase of the worm infection. Decline in parasitaemia to subpatent levels was associated with a reappearance of the immune response and expulsion of the worm. Babesia infections had little effect upon the expulsion of challenge infections of T. muris from mice previously immunized against the worm. Acute Babesia infections were found to exert a profound immunodepressive effect upon the agglutinating antibody response of mice to sheep red blood cells.  相似文献   

12.
Peromyscus leucopus populations exhibit unstable population dynamics. Mathematical models predict instability with chronic parasite infections that reduce host fecundity when the parasite distribution within the host population is close to random. We examined the role the nematode Pterygodermatites peromysci may play in influencing the dynamics of these mice. There were seven gastrointestinal worms infecting mice. Pterygodermatites peromysci was the most prevalent and varied seasonally from 12.3% in November to 36.0% in July. Prevalence was higher in adults (30.8%) than juveniles (4.6%) and there were no statistical differences in prevalence or intensity between the sexes. Overall the distribution was random; the relationship between log variance and log mean of P. peromysci intensity from 17 sites was not significantly different from unity. There were significant relationships between infection and breeding condition, suggesting parasites could be the cause of reduced female breeding. A generalized linear model found the likelihood of P. peromysci infection in adults increased with body mass, the presence of other helminths, and when hosts were in breeding condition. Likewise, the intensity of infection was positively related to co-infections and body mass. Pterygodermatites peromysci infection was associated with the presence of the oxyurid nematode Syphacia peromysci but co-infection was lower in females than males. Amongst females, co-infection was greater when breeding, particularly during lactation. The P. peromysci age-intensity relationship increased with age and rose to an asymptote as expected for a parasite with constant mortality and no acquired immunity. Overall, P. peromysci had a random distribution and was associated with reduced breeding; we discuss how these destabilizing processes may influence the dynamics of P. leucopus.  相似文献   

13.
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.  相似文献   

14.

Background

Nematode secreted haemoglobins have unusually high affinity for oxygen and possess nitric oxide deoxygenase, and catalase activity thought to be important in protection against host immune responses to infection. In this study, we generated a monoclonal antibody (48Eg) against haemoglobin of the nematode Anisakis pegreffii, and aimed to characterize cross-reactivity of 4E8g against haemoglobins of different nematodes and its potential to mediate protective immunity against a murine hookworm infection.

Methodology/Principal Findings

Immunoprecipitation was used to isolate the 4E8g-binding antigen in Anisakis and Ascaris extracts, which were identified as haemoglobins by peptide mass fingerprinting and MS/MS. Immunological cross-reactivity was also demonstrated with haemoglobin of the rodent hookworm N. brasiliensis. Immunogenicity of nematode haemoglobin in mice and humans was tested by immunoblotting. Anisakis haemoglobin was recognized by IgG and IgE antibodies of Anisakis-infected mice, while Ascaris haemoglobin was recognized by IgG but not IgE antibodies in mouse and human sera. Sequencing of Anisakis haemoglobin revealed high similarity to haemoglobin of a related marine nematode, Psuedoterranova decipiens, which lacks the four –HKEE repeats of Ascaris haemoglobin important in octamer assembly. The localization of haemoglobin in the different parasites was examined by immunohistochemistry and associated with the excretory-secretary ducts in Anisakis, Ascaris and N. brasiliensis. Anisakis haemoglobin was strongly expressed in the L3 stage, unlike Ascaris haemoglobin, which is reportedly mainly expressed in adult worms. Passive immunization of mice with 4E8g prior to infection with N. brasiliensis enhanced protective Th2 immunity and led to a significant decrease in worm burdens.

Conclusion

The monoclonal antibody 4E8g targets haemoglobin in broadly equivalent anatomical locations in parasitic nematodes and enhances host immunity to a hookworm infection.  相似文献   

15.
Microsporidia are intracellular pathogens that cause severe disease in immunocompromised humans and animals. We recently demonstrated that XID mice are more susceptible to Encephalitozoon cuniculi infection by intraperitoneal route, evidencing the role of B-1 cells in resistance against infection. The present study investigated the resistance and susceptibility against E. cuniculi oral infection, including the role of B-1 cells. BALB/c and BALB/c XID (B-1 cells deficient) mice were orally infected with E. cuniculi spores. No clinical symptoms were observed in infected animals; histopathology showed lymphoplasmocytic enteritis with degeneration of the apexes of the villi in all infected groups. Higher parasite burden was observed in infected BALB/c XID mice. In the spleen and peritoneum, all infected mice showed a decrease of lymphocytes, including CD8+ T cells, mostly in infected BALB/c XID mice. Adoptive transfer of B-1 cells (XID + B-1) was associated with a lower parasite burden. Pro-inflammatory cytokines (IFN-γ, TNF-α and IL-6) increased mostly in infected XID + B1 mice. Together, the present results showed that BALB/c XID mice infected by the oral route were more susceptible to encephalitozoonosis than BALB/c mice, demonstrating the B-1 cells importance in the control of the immune response against oral E. cuniculi infection.  相似文献   

16.
17.
Field studies have identified that male-biased infection can lead to increased rates of transmission, so we examined the relative importance of host sex on the transmission of a trophically transmitted parasite (Pterygodermatites peromysci) where there is no sex-biased infection. We experimentally reduced infection levels in either male or female white-footed mice (Peromyscus leucopus) on independent trapping grids with an anthelmintic and recorded subsequent infection levels in the intermediate host, the camel cricket (Ceuthophilus pallidipes). We found that anthelmintic treatment significantly reduced the prevalence of infection among crickets in both treatment groups compared with the control, and at a rate proportional to the number of mice de-wormed, indicating prevalence was not affected by the sex of the shedding definitive host. In contrast, parasite abundance in crickets was higher on the grids where females were treated compared with the grids where males were treated. These findings indicate that male hosts contribute disproportionately more infective stages to the environment and may therefore be responsible for the majority of parasite transmission even when there is no discernable sex-biased infection. We also investigated whether variation in nematode length between male and female hosts could account for this male-biased infectivity, but found no evidence to support that hypothesis.  相似文献   

18.
19.
Since it was first introduced into Asia from North America in the early 20th century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine’s proteins. These proteins could have been acquired by host–parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.  相似文献   

20.
The immune response of mice to the nematode Trichinella spiral's was markedly altered when the infection was superimposed upon an existing infection with Nematospiroides dubius. The expulsion of a primary infection of T. spiralis was delayed in such mice, and the worms persisted for at least 4 weeks longer than they did in control mice. The degree to which expulsion was suppressed was related to the number of N. dubius present. It would appear that both adult and larval stages of N. dubius can exert a suppressive effect, since the expulsion of T. spiralis was affected within days of a super-imposed (i.e., larval) N. dubius infection. When adult N. dubius were removed from mice 4 days before infection with T. spiralis, the mice expelled the latter parasite within the normal time, indicating that recovery from the suppressive effects of concurrent infection occurred rapidly. Concurrent infection with N. dubius appeared to affect both the afferent and efferent arms of the immune response to T. spiralis, since sensitization by, and memory of, prior infection were impaired and the expression of acquired immunity was inferior to that of controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号