首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究表明氧化应激反应和慢性炎症反应是2型糖尿病糖、脂代谢紊乱和胰岛素抵抗发生的重要病理机制。小檗碱是中药黄连的主要有效成分之一。体内、外研究证实小檗碱可通过抗氧化和抗炎作用发挥对2型糖尿病的治疗作用。本文就小檗碱抗氧化和抗炎作用用于2型糖尿病治疗的分子机制研究进展作一综述。小檗碱抗氧化和抗炎作用机制复杂,目前的研究显示小檗碱可通过AMPK通路、MAPK通路、Nrf2通路和NF-κB通路发挥抗氧化和抗炎作用。然而,小檗碱的抗氧化和抗炎作用仍需进一步的深入研究证实。明确小檗碱的抗氧化和抗炎作用的分子机制,有助于进一步了解小檗碱治疗糖尿病作用的机理,为探寻治疗糖尿病的天然药物提供理论依据。  相似文献   

2.
Berberine, a natural isoquinoline alkaloid, is used in herbal medicine and has recently been shown to have efficacy in the treatment of mood disorders. Furthermore, berberine modulates neurotransmitters and their receptor systems within the central nervous system. However, the detailed mechanisms of its action remain unclear. This review summarizes the pharmacological effects of berberine on mood disorders. Therefore, it may be helpful for potential application in the treatment of mood disorders.  相似文献   

3.
Cheng Z  Pang T  Gu M  Gao AH  Xie CM  Li JY  Nan FJ  Li J 《Biochimica et biophysica acta》2006,1760(11):1682-1689
Berberine is a plant alkaloid used in traditional Chinese medicine and has been reported to have antihyperglycemic activity in NIDDM patients. However, the molecular basis for this action is yet to be elucidated. Here we investigate the effects and signaling pathways of berberine on L6 rat skeletal muscles. Our study demonstrates that berberine stimulates glucose uptake in a time- and dose-dependent manner. Intriguingly, berberine-stimulated glucose uptake does not vary as insulin concentration increases, and could not be blocked by the PI 3-kinase inhibitor wortmannin. Berberine only weakly stimulates the phosphorylation of Akt/PKB, a key molecule in the insulin signaling pathway, but strongly promotes the phosphorylation of AMPK and p38 MAPK. The effects of berberine are not a result of pro-oxidant action, but a consequence of an increased cellular AMP:ATP ratio. Moreover, berberine-stimulated glucose uptake is inhibited by the AMPK inhibitor Compound C and the p38 MAPK inhibitor SB202190. Inhibition of AMPK reduces p38 MAPK phosphorylation, suggesting that AMPK lies upstream of p38 MAPK. These results suggest that berberine circumvents insulin signaling pathways and stimulates glucose uptake through the AMP-AMPK-p38 MAPK pathway, which may account for the antihyperglycemic effects of this drug.  相似文献   

4.
《Phytomedicine》2014,21(3):307-314
Berberine, an isoquinoline alkaloid, has wide biological and pharmacological actions. Despite the promising pharmacological effects and safety of berberine, poor oral absorption due to its extremely low aqueous solubility results in poor oral systemic bioavailability. This limits its clinical usage. This study describes the development and characterization of self-nanoemulsifying drug delivery system (SNEDDS) of berberine in liquid as well as solid form with improved solubility, dissolution and in vivo therapeutic efficacy. The SNEDDS of berberine were prepared using Acrysol K-150, Capmul MCM and polyethylene glycol 400. The formulations were characterized for various in vitro physicochemical characteristics. In vivo efficacy was evaluated in acetic acid induced inflammatory bowel model in rats. Anti-angiogenic activity of the developed SNEDDS of berberine was studied using chick chorioallantoic membrane assay. SNEDDS of berberine rapidly formed nanoemulsions with globule size of 17–45 nm. The in vitro rate and extent of release of berberine from SNEDDS was significantly higher than berberine alone. Chick chorioallantoic membrane assay revealed potent anti-angiogenic activity of SNEDDS of berberine. These studies demonstrate that the SNEDDS of berberine is a promising strategy for improving its therapeutic efficacy and have potential application in the treatment of chronic inflammatory conditions and cancer.  相似文献   

5.
Objectives: Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats.

Methods: Animals received an aqueous solution of lead acetate (500?mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50?mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations.

Results: Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration.

Discussion: Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses.

Conclusion: Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.  相似文献   

6.
近年来,呼吸系统肿瘤的发病人数和死亡人数均居世界前列且逐年上升,严重危害到人类的健康。目前,对于肿瘤的治疗多以手术切除和放化疗为主,容易出现扩散、转移和复发等现象,并且病人的身体要遭受巨大的病痛,同时也给病人及其家庭带来较大的经济负担。因此,对呼吸系统肿瘤的研究就变得十分重要。近年来,中医药发展迅速,越来越受到人们重视,以中草药中的天然化合物入药协助临床治疗已成为一种趋势。从药用植物黄连中提取的主要成分之一黄连素是一种异喹啉生物碱,对多种呼吸系统肿瘤都有特异性作用,能够通过mTOR、MAPK、CyclinB1、TF、TGF、MMP-2、VEGF、HIF-1α、AMPK、PD-L1、γH2AX等靶点和信号通路共同作用于肺癌、喉癌、鼻咽癌等呼吸系统肿瘤细胞。诱导细胞凋亡,调节细胞自噬,抑制其增殖、迁移和侵袭,抑制肿瘤细胞血管新生,促进免疫治疗,降低肿瘤细胞的耐药性等。本文综述了近年来黄连素及其衍生物抗呼吸系统肿瘤肺癌、喉癌和鼻咽癌等的作用及机制,将近年来有关黄连素对抗呼吸系统肿瘤的研究进行了整理、归纳和总结,并对目前研究不足的地方作出了展望,希望能找出下一步研究的方向,也希望黄连素能在呼吸系统肿瘤的治疗中更好地发挥作用,同时促进中草药成分应用于临床。  相似文献   

7.
The AMPK cascade is a sensor of cellular energy change, which monitors the AMP/ATP ratio to regulate cellular metabolism by restoring ATP levels, but its regulation of neuroinflammation mechanism remains unclear. Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been shown to improve several metabolic disorders, such as obesity and type II diabetes. However, the effect of berberine on neuroinflammatory responses in microglia are poorly understood. This study shows that berberine represses proinflammatory responses through AMP‐activated protein kinase (AMPK) activation in BV‐2 microglia. Our findings also demonstrate that berberine significantly down‐regulates LPS‐ or interferon (IFN)‐γ‐induced nitric oxide synthase (iNOS) and cyclo‐oxygenase‐2 (COX‐2) expression in BV‐2 microglia cells. Berberine also inhibited LPS‐ or IFN‐γ‐induced nitric oxide production. In addition, berberine effectively inhibited proinflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 expression. On the other hand, upon various inflammatory stimulus including LPS and IFN‐γ, berberine suppressed the phosphorylated of ERK but not p38 and JNK in BV‐2 microglia. AMPK activation is catalyzed by upstream kinases such as LKB1 and Ca2+/calmodulin‐dependent protein kinase kinase‐II (CaMKK II). Moreover, berberine induced LKB1 (Ser428), CaMKII (Thr286), and AMPK (Thr172) phosphorylation, but not AMPK (Ser485). Furthermore, the inhibitory effect of berberine on iNOS and COX‐2 expression was abolished by AMPK inhibition via Compound C, an AMPK inhibitor. Berberine‐suppressed ERK phosphorylation was also reversed by Compound C treatment. Our data demonstrate that berberine significantly induces AMPK signaling pathways activation, which is involved in anti‐neuroinflammation. J. Cell. Biochem. 110: 697–705, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Berberine, a type of isoquinoline alkaloid isolated from Chinese medicinal herbs, has been reported to have various pharmacological activities. Studies have demonstrated that berberine has beneficial effects on vascular remodeling and alleviates restenosis after vascular injury. However, its mechanism of action on vascular smooth muscle cell migration is not fully understood. We therefore investigated the effect of berberine on human aortic smooth muscle cell (HASMC) migration. Boyden chamber assay was performed to show that berberine inhibited HASMC migration dosedependently. Real-time PCR and Western blotting analyses showed that levels of matrix metalloproteinase (MMP)-2, MMP-9, and urokinase-type plasminogen activator (u-PA) were reduced by berberine at both the mRNA and protein levels. Western blotting assay further confirmed that activities of c-Fos, c-Jun, and NF-κB were significantly attenuated. These results suggest that berberine effectively inhibited HASMC migration, possibly by down-regulating MMP-2, MMP-9, and u-PA; and interrupting AP-1 and NF-κB mediated signaling pathways. [BMB Reports 2014; 47(7): 388-392]  相似文献   

9.
BackgroundMusculoskeletal disorders are a group of disorders that affect the joints, bones, and muscles, causing long-term disability. Berberine, an isoquinoline alkaloid, has been previously established to exhibit beneficial properties in preventing various diseases, including musculoskeletal disorders.PurposeThis review article aims to recapitulate the therapeutic potential of berberine and its mechanism of action in treating musculoskeletal disorders.MethodsA wide range of literature illustrating the effects of berberine in ameliorating musculoskeletal disorders was retrieved from online electronic databases (PubMed and Medline) and reviewed.ResultsBerberine may potentially retard the progression of osteoporosis, osteoarthritis and rheumatoid arthritis. Limited studies reported the effects of berberine in suppressing the proliferation of osteosarcoma cells. These beneficial properties of berberine are mediated in part through its ability to target multiple signaling pathways, including PKA, p38 MAPK, Wnt/β-catenin, AMPK, RANK/RANKL/OPG, PI3K/Akt, NFAT, NF-κB, Hedgehog, and oxidative stress signaling. In addition, berberine exhibited anti-apoptotic, anti-inflammatory, and immunosuppressive properties.ConclusionThe current evidence indicates that berberine may be effective in preventing musculoskeletal disorders. However, findings from in vitro and in vivo investigations await further validation from human clinical trial.  相似文献   

10.
Pharmacological stimulation of adipose tissue remodeling and thermogenesis to increase energy expenditure is expected to be a viable therapeutic strategy for obesity. Berberine has been reported to have pharmacological activity in adipose tissue to anti-obesity, while the mechanism remains unclear. Here, we observed that berberine significantly reduced the body weight and insulin resistance of high-fat diet mice by promoting the distribution of brown adipose tissue and thermogenesis. We have further demonstrated that berberine activated energy metabolic sensing pathway AMPK/SIRT1 axis to increase the level of PPARγ deacetylation, which leads to promoting adipose tissue remodeling and increasing the expression of the thermogenic protein UCP-1. These findings suggest that berberine that enhances the AMPK/SIRT1 pathway can act as a selective PPARγ activator to promote adipose tissue remodeling and thermogenesis. This study proposes a new mechanism for the regulation of berberine in adipose tissue and offers a great prospect for berberine in obesity treatment  相似文献   

11.
Today, pharmacognosy is considered a valuable science in the prevention and treatment of diseases. Among herbals, Berberine is an isoquinoline alkaloid found in the Berberis species. Surprisingly, it shows antimicrobial, antiviral, antidiarrheal, antipyretic, and anti-inflammatory potential. Furthermore, it diminishes drug resistance in cancer therapy and enhances tumor suppression in part through autophagy and cell cycle arrest mechanisms. In the present review, we discuss the effect of berberine on diverse cellular pathways and describe how berberine acts as an autophagy modulator to adjust physiologic and pathologic conditions and diminishes drug resistance in cancer therapy.  相似文献   

12.
Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis).  相似文献   

13.
Abstract

The binding of small molecules with histone-DNA complexes can cause an interference in vital cellular processes such as cell division and the growth of cancerous cells that results in apoptosis. It is significant to study the interaction of small molecules with histone-DNA complex for the purpose of better understanding their mechanism of action, as well as designing novel and more effective drug compounds. The fluorescence quenching of ct-DNA upon interaction with Berberine has determined the binding of Berberine to ct-DNA with Ksv?=?9.46?×?107 M?1. Ksv value of ct-DNA-Berberine in the presence of H1 has been observed to be 3.10?×?107 M?1, indicating that the H1 has caused a reduction in the binding affinity of Berberine to ct-DNA. In the competitive emission spectrum, ethidium bromide (EB) and acridine orange (AO) have been examined as intercalators through the addition of Berberine to ct-DNA complexes, which includes ctDNA-EB and ctDNA-AO. Although in the presence of histone H1 , we have observed signs of competition through the induced changes within the emission spectra, yet there has been apparently no competition between the ligands and probes. The viscosity results have confirmed the different behaviors of interaction between ctDNA and Berberine throughout the binary and ternary systems. We have figured out the IC50 and viability percent values at three different time durations of interaction between Berberine and MCF7 cell line. The molecular experiments have been completed by achieving the results of MTT assay, which have been confirmed to be in good agreement with molecular modeling studies.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells.The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H2O) extract.The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 μg BuOH extract (that was gained from 1 mg dried root) contained 2.0 μg berberine and 0.3 μg/ml palmatine. 1.2 μg/ml berberine inhibited cell proliferation significantly, while 0.5 μg/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of α-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.  相似文献   

15.
Colon cancer is associated with a poor prognosis, motivating strategies to prevent its development. An encouraging preventative strategy is the use of nutraceuticals; however, scientific verification of therapeutic functions and mechanisms of biological activity are necessary for the acceptance of dietary supplements in cancer treatment. Berberine is a benzylisoquinoline alkaloid extracted from many kinds of medicinal plants that has been extensively used as a Chinese traditional medicine. Recently, berberine has been reported to possess antitumoral activities. Among the various cellular targets of berberine is AMP-activated protein kinase (AMPK), which regulates tumor progression and metastasis. However, the specific role of berberine-induced AMPK activation and its effects on the metastatic potential of colon cancer remain largely unknown. The present study investigated berberine-induced activation of AMPK and its effects on colon cancer cell migration. Berberine decreased the migration of SW480 and HCT116 cells. We found that berberine activated AMPK in human colon cancer cell lines. Notably, berberine-induced activation of AMPK reduced the integrin β1 protein levels and decreased the phosphorylation of integrin β1 signaling targets. Knockdown of AMPKα1 subunits using small interfering RNA significantly attenuated berberine-induced downregulation of integrin β1 and inhibition of tumor cell migration. Collectively, our results suggest that berberine-induced AMPK activation inhibits the metastatic potential of colon cancer cells by decreasing integrin β1 protein levels and downstream signaling.  相似文献   

16.
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T‐cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti‐inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti‐inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti‐inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro‐inflammatory Th1 and Th17 cells, and indirectly decrease Th cell‐mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.  相似文献   

17.
Background: Insulin therapy is the major treatment of glycaemic control in type I diabetes mellitus (DM) and advanced type II DM patients who fail to respond to oral hypoglycemic agents. Nonetheless, insulin therapy is deemed unsuccessful in controlling the incidence of diabetic retinopathy (DR) and is likely a risk factor. Berberine, an isoquinoline alkaloid, has caught great attention towards its anti-diabetic mechanisms. This study aims to investigate the effect of berberine in decelerating DR progression in insulin-treated DM.Methods: To better understand the therapeutic potential of berberine in the presence of insulin, we elaborated the action of mechanism whether berberine inhibited retinal expression of HIF-1α and VEGF through regulating AKT/mTOR pathway. Suppression of insulin-induced neovasculature of retina endothelial cells by berberine was also studied. Lastly, the in vivo efficacy and safety of berberine as adjuvant therapy for the treatment of DR were systemically investigated in experimental type I and type II DM mice with insulin treatment.Results: Among various types of retinal cells, the activity of HIF-1α and VEGF in retinal endothelial cells could be particularly and exclusively stimulated by insulin intervention, which could be inhibited by berberine treatment in a dose- and time-dependent manner. Berberine suppressed Akt/mTOR activity in these cells, and restoration of Akt/mTOR signalling attenuated berberine''s inhibition on HIF-1α and VEGF expression. Berberine suppressed the progression of DR in experimental type I and type II diabetic mice receiving insulin therapy.Conclusion: Berberine improves insulin-induced diabetic retinopathy in type I and II diabetes through inhibiting insulin-induced activation of retinal endotheliocytes via Akt/mTOR/ HIF-1α/VEGF pathway.  相似文献   

18.
Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.  相似文献   

19.
20.
Berberine, a plant alkaloid used in traditional Chinese medicine, has a wide spectrum of pharmacological actions, but the poor bioavailability limits its clinical use. The present aim was to observe the effects of sodium caprate on the intestinal absorption and antidiabetic action of berberine. The in situ, in vitro, and in vivo models were used to observe the effect of sodium caprate on the intestinal absorption of berberine. Intestinal mucosa morphology was measured to evaluate the toxic effect of sodium caprate. Diabetic model was used to evaluate antidiabetic effect of berberine coadministrated with sodium caprate. The results showed that the absorption of berberine in the small intestine was poor and that sodium caprate could significantly improve the poor absorption of berberine in the small intestine. Sodium caprate stimulated mucosal-to-serosal transport of berberine; the enhancement ratios were 2.08, 1.49, and 3.49 in the duodenum, jejunum, and ileum, respectively. After coadministration, the area under the plasma concentration–time curve of berberine was increased 28% than that in the absence of sodium caprate. Furthermore, both berberine and coadministration with sodium caprate orally could significantly decrease fasting blood glucose and improve glucose tolerance in diabetic rats (P?P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号