首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. Lanaras  G. A. Codd 《Planta》1982,154(3):284-288
Ribulose 1,5-bisphosphate (RuBP) carboxylase is present in the cytoplasm and carboxysomes (polyhedral bodies) of the cyanobacterium Chlorogloeopsis fritschii. In vitro enzyme activities have been measured throughout photoautotrophic batch culture, together with RuBP carboxylase protein concentrations, determined by rocket immunoelectrophoresis. Enzyme activities and protein levels in the cytoplasmic and carboxysomal fractions varied in an apparently inverse manner during growth. The RuBP carboxylase activities per unit enzyme protein were maximal in late lag phase/early exponential phase for both cellular enzyme pools. Both rates per unit enzyme protein declined during exponential phase, cytoplasmic enzyme activity remaining consistently higher than that of the carboxysomal enzyme. Activities per unit cytoplasmic and carboxysomal enzyme protein showed very low, similar rates in late stationary phase and death phase. Dialysis experiments indicated that such changes were not due to interference in activity assays by soluble endogenous effectors. Major shifts in the subcellular distribution of RuBP carboxylase protein were found versus culture age, enzyme protein levels being predominantly carboxysomal in lag phase, mainly soluble in exponential phase and then mainly carboxysomal again in stationary/death phase. The data are discussed in terms of carboxysome function and the question of control of RuBP carboxylase synthesis in cyanobacteria.Abbreviations RuBP D-ribulose 1,5-bisphosphate - LTIB low Tris isolation buffer - HTIB high Tris isolation buffer - RIE rocket immunoelectrophoresis  相似文献   

2.
T. Lanaras  G. A. Codd 《Planta》1981,153(3):279-285
Ribulose 1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) activity was approximately equally distributed between supernatant and pellet fractions produced by differential centrifugation of disrupted cells of Chlorogloeopsis fritschii. Low ionic strength buffer favoured the recovery of particulate RuBP carboxylase. Density gradient centrifugation of resuspended cell-free particulate material produced a single band of RuBP carboxylase activity, which was associated with the polyhedral body fraction, rather than with the thylakoids or other observable particles. Isolated polyhedral body stability was improved by density gradient centrifugation through gradients of Percoll plus sucrose in buffer, which yielded apparently intact polyhedral bodies. These were 100 to 150 nm in diameter and contained ring-shaped, 12 nm diameter particles. It is inferred that the C. fritschii polyhedral bodies are carboxysomes. Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis of SDS-dissociated polyhedral bodies revealed 8 major polypeptides. The most abundant, with molecular weights of 52,000 and 13,000, correspond with the large and small subunits, respectively, of RuBP carboxylase.Abbreviations RuBP ribulose 1,5-bisphosphate - Ru5P ribulose 5-phosphate - SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - EDTA ethylenediamine tetraacetic acid - Tris tris (hydroxymethyl) methylamine - IB isolation buffer - TCA trichloroacetic acid  相似文献   

3.
The bacterial symbionts of many marine invertebrates contain ribulose 1,5-bisphosphate (RuBP) carboxylase but apparently no carboxysomes, polyhedral bodies containing RuBP carboxylase. In the few cases where polyhedral bodies have been observed they have not been characterised enzymatically. Polyhedral bodies, 50–90 nm in diameter, were observed in thin cell sections of Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa and RuBP carboxylase activity was detected in both soluble and particulate fractions after centrifugation of cell-free extracts. RuBP carboxylase purified 90-fold from the soluble fraction was of high molecular weight and consisted of large and small subunits, with molecular weights of 53,110 and 11,100 respectively. Particulate RuBP carboxylase activity was associated with polyhedral bodies 50–100 nm in diameter, as revealed by density gradient centrifugation and electron microscopy. Therefore, the polyhedral bodies were inferred to be carboxysomes. Native electrophoresis of isolated carboxysomes demonstrated a major band which comigrated with the purified RuBP carboxylase and three minor bands of lower molecular weight. Sodium dodecyl-sulphate (SDS) gel electrophoresis of SDS-dissociated carboxysomes demonstrated nine major polypeptides two of which were the large and small subunits of RuBP carboxylase. The RuBP carboxylase subunits represented 21% of the total carboxysomal protein. The most abundant polypeptide had a molecular weight of 40,500. Knowledge of carboxysome composition is necessary to provide an understanding of carboxysome function.Abbreviations FPLC fast performance liquid chromatography - IB isolation buffer - PAGE polyacrylamide gel electrophoresis - RuBP carboxylase - ribulose 1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl-sulphate  相似文献   

4.
A gene bank of the nutritionally versatile, nitrogen-fixing cyanobacterium Chlorogloeopsis fritschii was constructed in Charon 4A. 2,800 recombinants containing 10–20 kbp C. fritschii DNA fragments were screened by Southern hybridization using probes containing the genes for the large (LSU) and small (SSU) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Anacystis nidulans. A single recombinant plaque (CDG1) containing a 10.9 kbp EcoR1 fragment from C. fritschii hybridized to both the LSU and SSU probes, indicating a possible linkage of these RuBisCO genes in C. fritschii. RuBisCO activity and protein were detected in CDG1 lysates of Escherichia coli. Hybridization was also obtained between C. fritschii DNA and the LSU probe from Chlamydomonas reinhardtii, although no homology was detected using the LSU probe from maize or the SSU probe from pea.Abbreviations RuBisCO d-ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - LSU large subunit of RuBisCO - SSU small subunit of RuBisCO - SDS sodium dodecyl sulphate - DOC deoxycholate  相似文献   

5.
B. Pineau 《Planta》1982,156(2):117-128
Light induction of chloroplast development in Euglena leads to quantitative changes in the protein composition of the soluble cell part. One major part of these is the observed accumulation of ribulose-1.5-bisphosphate carboxylase/oxygenase (RuBPCase) enzyme (EC 4.1.1.39). As measured by immunoelectrophoresis, a small amount of RuBPCase (about 10-6 pmol) is present in a dark-grown cell, whereas a greening cell (72h) contains 10–20 pmol enzyme. Both the cytoplasmic and chloroplastic translation inhibitors, cycloheximide and spectinomycin, have a strong inhibitory effect on the synthesis of the enzyme throughout the greening process of Euglena cells. Electrophoretic and immunological analyses of the soluble phase prepared from etiolated or greening cells do not show the presence of free subunits of the enzyme. For each antibiotic-treated greening cell, the syntheses of both subunits are blocked. Our data indicate that tight reciprocal control between the syntheses of the two classes of subunits occurs in Euglena. In particular, the RuBPCase small subunit synthesis in greening Euglena seems more dependent on the protein synthesis activity of the chloroplast than the syntheses of other stromal proteins from cytoplasmic origin.Abbreviations LSU large subunit of ribulose-1.5-bisphosphate carboxylase - RuBP ribulose-1.5-bisphosphate - RuBP-Case ribulose-1.5-bisphosphate carboxylase - SSU small subunit of ribulose-1.5-bisphosphate carboxylase  相似文献   

6.
Trypsin digestion reduces the sizes of both the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from the green alga Chlamydomonas reinhardtii. Incubation of either CO2/Mg2+ -activated or nonactivated enzyme with the transition-state analogue carboxyarabinitol bisphosphate protects a trypsin-sensitive site of the large subunit, but not of the small subunit. Incubation of the nonactivated enzyme with ribulosebisphosphate (RuBP) provided the same degree of protection. Thus, the very tight binding that is a characteristic of the transitionstate analogue is apparently not required for the protection of the trypsin-sensitive site of the large subunit. Mutant enzymes that have reduced CO2/O2 specificities failed to bind carboxyarabinitol bisphosphate tightly. However, their large-subunit trypsin-sensitive sites could still be protected. The K m values for RuBP were not significantly changed for the mutant enzymes, but the V max values for carboxylation were reduced substantially. These results indicate that the failure of the mutant enzymes to bind the transition-state analogue tightly is primarily the consequence of an impairment in the second irreversible binding step. Thus, in all of the mutant enzymes, defects appear to exist in stabilizing the transition state of the carboxylation step, which is precisely the step proposed to influence the CO2/O2 specificity of Rubisco.Abbreviations and Symbols CABP 2-carboxyarabinitol 1,5-bisphosphate - enol-RuBP 2,3-enediolate of ribulose 1,5-bisphosphate - K c K m for CO2 - K o K m for O2 - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation Paper No. 9313, Journal Series, Nebraska Agricultural Research DivisionThis work was supported by National Science Foundation grant DMB-8703820. We thank Drs. Archie Portis and Raymond Chollet for their helpful comments, and also thank Dr. Chollet for graciously providing CABP and [14C]CABP.  相似文献   

7.
N. W. Kerby  L. V. Evans 《Planta》1981,151(5):469-475
Characterization by peptide mapping and amino acid analysis of the two major pyrenoid polypeptides from the brown alga Pilayella littoralis shows that they are very similar to the subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) from this alga. The observed similarities are discussed in relation to previous pyrenoid protein characterization from members of the Chlorophyceae.Abbreviations DTT dithiothreitol - EDTA Na2 ethylenediamine tetraacetic acid (disodium salt) - PMFS phenylmethylsul-phonylfluoride - PVPP polyvinylpyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - TRIS 2-amino-2-(hydroxymethyl) propane-1,3-diol - TPCK L-1-tosylamido-2-phenylethylchoromethyl ketone  相似文献   

8.
N. W. Kerby  L. V. Evans 《Planta》1978,142(1):91-95
In order to isolate high yields of pyrenoids from the brown alga Pilayella littoralis it is necessary to pretreat them with 0.1% HgCl2 in sea water for 3 h. Without this pretreatment there is a substantial loss of pyrenoid ground substance and yields are low. Pyrenoid fractions of high purity have been obtained using silica sol gradients. A partial characterization has shown the pyrenoid to be proteinaceous and lacking chlorophyll. SDS polyacrylamide gel electrophoresis has shown that the majority of protein present is accounted for by two polypeptides which resemble the large and small subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39).Abbreviations DTT dithiothreitol - HEPES N-2-hydroxyethylniperazine N1-2-ethanesulfonic acid - PEG polyethylene glycol - PVPP polyvinylpolypyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate  相似文献   

9.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been quantified by immunological methods in Thiobacillus neapolitanus cultivated under various growth conditions in the chemostat at a fixed dilution rate of 0.07 h-1. RuBPCase was a major protein in T. neapolitanus accounting for a maximum of 17% of the total protein during CO2 limitation and for a minimum of 4% during either ammonium- or thiosulfate limitation in the presence of 5% CO2 (v/v) in the gasphase. The soluble RuBPCase (i.e. in the cytosol) and the particulate RuBPCase (i.e. in the carboxysomes) were shown to be immunologically identical. The intracellular distribution of RuBPCase protein between carboxysomes and cytosol was quantified by rocket immunoelectrophoresis. The particulate RuBPCase content, which correlated with the volume density of carboxysomes, was minimal during ammonium limitation (1.3% of the total protein) and maximal during CO2 limitation (6.8% of the total protein). A protein storage function of carboxysomes is doubtful since nitrogen starvation did not result in degradation of particulate RuBPCase within 24 h. Proteolysis of RuBPCase was not detected. Carboxysomes, on the other hand, were degraded rapidly (50% within 1 h) after change-over from CO2 limitation to thiosulfate limitation with excess CO2. Particulate RuBPCase protein became soluble during this degradation of carboxysomes, but this did not result in an increase in soluble RuBPCase activity. Modification of RuBPCase resulting in a lower true specific activity was suggested to explain this phenomenon. The true specific activity was very similar for soluble and particulate RuBPCase during various steady state growth conditions (about 700 nmol/min·mg RuBPCase protein), with the exception of CO2-limited growth when the true specific activity of the soluble RuBPCase was extremely low (260 nmol/min ·mg protein). When chemostat cultures of T. neapolitanus were exposed to different oxygen tensions, neither the intracellular distribution of RuBPCase nor the content of RuBPCase were affected. Short-term labelling experiments showed that during CO2 limitation, when carboxysomes were most abundant, CO2 is fixed via the Calvin cycle. The data are assessed in terms of possible functions of carboxysomes.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - PEP phosphoenolpyruvate - RIE rocket immunoelectrophoresis - CIE crossed immunoelectrophoresis  相似文献   

10.
The relationship between the gas-exchange characteristics of attached leaves of Phaseolus vulgaris L. and the pool sizes of several carbon-reduction-cycle intermediates was examined. After determining the rate of CO2 assimilation at known intercellular CO2 pressure, O2 pressure and light, the leaf was rapidly killed (<0.1 s) and the levels of ribulose-1,5-bisphosphate (RuBP), 3-phosphoglyceric acid (PGA), fructose-1,6-bisphosphate, fructose-6-phosphate, glucose-6-phosphate, glyceraldehyde-3-phosphate, and dihydroxyacetone phosphate were measured. In 210 mbar O2, photosynthesis appeared RuBP-saturated at low CO2 pressure and RuBP-limited at high CO2 pressure. In 21 mbar (2%) O2, the level of RuBP always appeared saturating. Very high levels of PGA and other phosphate-containing compounds were found with some conditions, especially under low oxygen.Abbreviations and symbols C1 intercellular CO2 pressure - PGA 3-phosphoglyceric acid - RuBP ribulose-1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase  相似文献   

11.
The Chlamydomonas reinhardtii (Dangeard) temperature-conditional mutant 68-11AR is phenotypically indistinguishable from the wild type at the permissive temperature (25°C), but has greatly reduced photosynthetic ability and requires acetate for growth at the restrictive temperature (35°C). The mutant strain is deficient in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) holoenzyme when grown at 35°C. This decrease in the level of enzyme appears to be due to degradation of assembled holoenzyme rather than to a reduction in the synthesis of enzyme subunits. When grown at 25°C, the mutant has a substantial amount of Rubisco. Enzyme purified from 25°C-grown mutant cells was found to have a 16% decrease in the CO2/O2 specificity factor when compared to the wild-type enzyme. This alteration was accompanied by changes in the kinetic constants for both carboxylation and oxygenation. Although the Rubisco active site is located on the chloroplast-encoded large subunit, genetic analysis showed that the 68-11AR strain arose from a nucleargene mutation. The two nuclear genes that encode the Rubisco small subunits (rbcS1 and rbcS2) were cloned from mutant 68-11AR and completely sequenced, but no mutation was found. Analysis of restriction-fragment length polymorphisms also failed to detect linkage between mutant and rbcS gene loci. These results indicate that nuclear genes can influence Rubisco catalysis without necessarily encoding polypeptides that reside within the holoenzyme.Abbreviations and Symbols K c Michaelis constant for CO2 - K o Michaelis constant for O2 - mt mating type - pf paralyzed flagella - RFLP restriction-fragment length polymorphism - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation - CO2/O2 specificity factor C. G. gratefully acknowledges fellowship support from the Consejo Superior de Investigaciones Cientificas (Spain). This work was supported by National Science Foundation grant MCB-9005547, and is published as Paper No. 10481, Journal Series, Nebraska Agricultural Research Division.  相似文献   

12.
Vitellin from the cabbage butterfly Pieris rapae L. was purified and characterized by electrophoresis. Vitellin from P. rapae is a phosphorylated glycolipoprotein of 380,000 ± 10,000 molecular weight as determined by nondenaturing polyacrylamide gel electrophoresis. Two subunits with an Mr of 150,000 and 40,000 were obtained from vitellin. The native molecule is thought to be a tetramer composed of two molecules of each of these subunits. The isoelectric point, as determined by isoelectric focusing on polyacrylamide gels, is 6.10. Vitellin and vitellogenin were indistinguishable by immunological methods such as double diffusion and tandem-crossed immunoelectrophoresis. Vitellogenin from the hemolymph and vitellin from the ovary were quantified by rocket immunoelectrophoresis. Vitellogenin and vitellin were first detected in 6-day-old pupae, and their levels increased continuously during ovarian development. Vitellogenin synthesis by the fat body in 4-day-old female pupae could be induced by juvenile hormone I.  相似文献   

13.
Activity of ribulose 1,5-bisphosphate (RuBP) carboxylase in leaf extracts of the constitutive Crassulacean acid metabolism (CAM) plant Kalanchoe pinnata (Lam.) Pers. decreased with increasing leaf age, whereas the activity of phosphoenolpyruvate (PEP) carboxylase increased. Changes in enzyme activities were associated with changes in the amount of enzyme proteins as determined by immunochemical analysis, sucrose density gradient centrifugation, and SDS gel electrophoresis of leaf extracts. Young developing leaves of plants which received high amounts of NO 3 - during growth contained about 30% of the total soluble protein in the form of RuBP carboxylase; this value declined to about 17% in mature leaves. The level of PEP carboxylase in young leaves of plants at high NO 3 - was an estimated 1% of the total soluble protein and increased to approximately 10% in mature leaves, which showed maximum capacity for dark CO2 fixation. The growth of plants at low levels of NO 3 - decreased the content of soluble protein per unit leaf area as well as the extractable activity and the percentage contribution of both RUBP carboxylase and PEP carboxylase to total soluble leaf protein. There was no definite change in the ratio of RuBP carboxylase to PEP carboxylase activity with a varying supply of NO 3 - during growth. It has been suggested (e.g., Planta 144, 143–151, 1978) that a rhythmic pattern of synthesis and degradation of PEP carboxylase protein is involved in the regulation of -carboxylation during a day/night cycle in CAM. No such changes in the quantity of PEP carboxylase protein were observed in the leaves of Kalanchoe pinnata (Lam.) Pers. or in the leaves of the inducible CAM plant Mesembryanthemum crystallinum L.Abbreviations CAM Crassulacean acid metabolism - RuBP ribulose 1,5-bisphosphate - PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate  相似文献   

14.
B. Ranty  G. Cavalie 《Planta》1982,155(5):388-391
Extracts from sunflower leaves possess a high ribulose-1,5-bisphosphate (RuBP) carboxylase capacity but this enzyme activity is not stable. A purification procedure, developed with preservation of carboxylase activity by MgSO4, yielded purified RuBP carboxylase with high specific activity (40 nkat mg-1 protein). Measurement of kinetic parameters showed high Km values (RuBP, HCO 3 - ) and high Vmax of the reaction catalyzed by this sunflower enzyme; the results are compared with those obtained for soybean carboxylase. Enzyme characteristics are discussed in relation to stabilization and activation procedures and to the high photosynthesis rates of this C3 species.  相似文献   

15.
The development of a simple method for the isolation of purified carboxysomes from the cyanobacterium Synechococcus PCC7942 has made it possible to identify a specific and inducible, intracellular carbonic anhydrase (CA) activity that is strongly associated with carboxysomes. This was shown, in part, through enzyme recovery experiments that indicated that a clear majority of a CA activity that is sensitive to the CA inhibitor ethoxyzolamide (I50 = 4 μm) copurifies with a majority of the cell's ribulose-1,5-bisphosphate carboxylase/oxygenase activity in a highly purified pelletable fraction. Electron microscopy of this pelletable fraction revealed the presence of carboxysomes that were physically intact. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of carboxysome proteins showed that the large and small subunits of ribulose-1,5-bisphosphate carbosylase/oxygenase were clearly prominent and that several other minor proteins could be distinguished. The specific location of this carboxysomal CA activity is further reinforced by the finding that a previously isolated high CO2-requiring mutant, Type II/No. 68 (G.D. Price, M.R. Badger [1989] Plant Physiol 91: 514-525), displayed a 30-fold reduction in carboxysome-associated CA activity when tested under optimal conditions. Carboxysomal CA has the unusual property of being inactivated by dithiothreitol. The enzyme also requires 20 mm Mg2+ (as MgSO4) for near maximum activity; other divalent cations, such as Ca2+ and Mn2+, also stimulate carboxysomal CA activity, but to a lesser extent than Mg2+. Results are discussed in relation to the role of carboxysomes in the CO2-concentrating mechanism in cyanobacteria and the role that carboxysomal CA activity appears to play in this process.  相似文献   

16.
d-Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified 80-fold from malate-grown Thiocapsa roseopersicina by salting out the enzyme from the high-speed supernatant between 68–95% saturation with respect to (NH4)2SO4, gelfiltration through Sephadex G-100, and DEAE-cellulose chromatography followed by sedimentation into a 14–34% glycerol gradient. The specific activity of enzyme for the carboxylase reaction was 2.45 mol RuBP-dependent CO2 fixed/min · mg protein (at pH 8.0 and 30° C) and for the oxygenase reaction was 0.23 mol RuBP-dependent O2 consumed/min · mg protein (at pH 8.6, and 25° C). The enzyme, which was ultracentrifugally homogeneous in the presence of 4 and 10% v/v glycerol, was stable for at least one year at-80° C in the presence of 10% glycerol. S20, w values obtained in the presence of 4 and 10% glycerol were 19.3 and 16.2, respectively. The enzyme contained both large (53,000-daltons) and mixed small subunits (15,000- and 13,500-daltons).Borate-dependent inactivation of the enzyme by 2,3-butadione, which was greatly reduced in the presence of the product 3-phosphoglycerate, suggested that one or more arginines are at the active site.Abbreviations DTT dithiotreitol - RuBP d-ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate - TCA trichloroacetic acid - TEMBDG buffer (pH 8.0 at 25°C) containing 20 mM Tris, 1 mM disodium EDTA · 2 H2O, 10 mM MgCl2·6 H2O, 50 mM NaHCO3, 0.1 mM DTT and 10% glycerol (v/v)  相似文献   

17.
The activities of ribulose 1,5-bisphosphate carboxylase and of carbonic anhydrase were studied in cell-free extracts of two symbiotic Chlorella strains isolated from Paramecium bursaria and from Spongilla sp., and of two nonsymbiotic strains of Chlorella (Chlorella fusca and Chlorella vulgaris) cultivated at varied CO2-concentrations. The symbiotic Chlorella of Paramecium bursaria differs distinctly from the other Chlorella strains by a higher activity of ribulose 1,5-bisphosphate carboxylase, which is independent of the actual CO2-concentration, and by a lack of carbonic anhydrase activity. These properties are discussed with respect to their ecological significance.Abbreviations CA carbonic anhydrase - Pbi Paramecium bursaria isolate - RuBP ribulose 1,5-bisphosphate Dedicated to Prof. Dr. André Pirson on the occasion of his 70th birthday  相似文献   

18.
The CO2-fixing enzyme rubisco is responsible for almost all carbon fixation. This process frequently requires rubisco activase (Rca) machinery, which couples ATP hydrolysis to the removal of inhibitory sugar phosphates, including the rubisco substrate ribulose 1,5-bisphosphate (RuBP). Rubisco is sometimes compartmentalized in carboxysomes, bacterial microcompartments that enable a carbon dioxide concentrating mechanism (CCM). Characterized carboxysomal rubiscos, however, are not prone to inhibition, and often no activase machinery is associated with these enzymes. Here, we characterize two carboxysomal rubiscos of the form IAC clade that are associated with CbbQO-type Rcas. These enzymes release RuBP at a much lower rate than the canonical carboxysomal rubisco from Synechococcus PCC6301. We found that CbbQO-type Rcas encoded in carboxysome gene clusters can remove RuBP and the tight-binding transition state analog carboxy-arabinitol 1,5-bisphosphate from cognate rubiscos. The Acidithiobacillus ferrooxidans genome encodes two form IA rubiscos associated with two sets of cbbQ and cbbO genes. We show that the two CbbQO activase systems display specificity for the rubisco enzyme encoded in the same gene cluster, and this property can be switched by substituting the C-terminal three residues of the large subunit. Our findings indicate that the kinetic and inhibitory properties of proteobacterial form IA rubiscos are diverse and predict that Rcas may be necessary for some α-carboxysomal CCMs. These findings will have implications for efforts aiming to introduce biophysical CCMs into plants and other hosts for improvement of carbon fixation of crops.  相似文献   

19.
In an attempt to produce chloroplast extracts containing ribulose 1,5-bisphosphate (RuBP) carboxylase in its fully activated state, MgCl2 and NaHCO3 were included in the medium used to osmotically shock chloroplasts. Extracts prepared in this manner contained lower levels of the enzyme than those prepared in the absence of MgCl2 and NaHCO3. The difference in enzyme levels was found to be attributable to an association in the presence of Mg2+, between RuBP carboxylase and the thylakoids removed from the extract during its preparation. Some monovalent cations caused a similar association, although to a lesser extent. The trivalent cation Tris(ethylenediamine) cobalt(III) was more effective in causing this association, but was highly inhibitory to the enzyme. The results suggest that the attraction between thylakoids and RuBP carboxylase in the presence of certain ions is likely to be electrical in nature. The results are discussed in terms of the media used to isolate RuBP carboxylase.  相似文献   

20.
The aim was to determine whether a reduced carboxylation efficiency in needles of damaged spruce trees (Picea abies), is derived from a direct impairment of the ribulose-1,5-bisphosphate carboxylase (RuBP carboxylase) or there is an indirect inhibition of the RuBP carboxylase. In 1985, 1986 and 1987 measurements of RuBP carboxylase activity were carried out at three locations. Trees of different ages and degrees of damage were examined. RuBP carboxylase was assayed using both a rapid extraction method to determine the initial activity and an in vitro test after total activation to determine the total activity. The activation state was calculated as the ratio of initial activity to total activity.Within three vegetation periods the total activity in needles of damaged and apparently healthy or slightly damaged spruce trees indicated no definite difference in the annual average. On the other hand, in damaged needles a continued decline of the actual activation of RuBP carboxylase was established. The observation of continued depression of the activation state of the enzyme in needles of damaged spruce trees can possibly be due to a reduced photosynthetic electron transport rate.The measurements of the soluble protein content indicate a tendency to increased amounts in the needles of damaged trees. In accordance, a considerable increase of the activity of some enzymes like glutamine synthethase, phosphoenol-pyruvate carboxylase, and catalase could be noticed. However, there is no clear connection between the RuBP carboxylase and the content of soluble proteins.Abbreviations chl chlorophyll a+b, dw-dry weight, i.a-initial activity - P-700 reaction center of photosystem I - PVP polyvinylpyrrolidone 25 - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - t.a. total activity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号