首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipid-binding properties of bovine factor V and factor Va.   总被引:5,自引:0,他引:5  
J W Bloom  M E Nesheim  K G Mann 《Biochemistry》1979,18(20):4419-4425
Factor V and factor Va binding to single bilayer phospholipid vesicles was investigated by light-scattering intensity measurements. This technique allows the measurement of free and phospholipid-bound protein concentrations from which equilibrium constants can be obtained. As controls, the Ca2+-dependent phospholipid binding of prothrombin and factor X were also studied. The average values obtained for the dissociation constants (Kd) and lipid to protein ratio at saturation, moles/mole (n), for prothrombin (Kd = 2.3 X 10(-6) M, n = 104) and factor X (Kd = 2.5 X 10(-6) M, n = 46) binding to vesicles containing 25% Folch fraction III and 75% phosphatidylcholine in the presence of 2 mM Ca2+ were in agreement with those reported in the literature. The average factor V and factor Va values for the dissociation constants and lipid to protein ratio at saturation (moles/mole) were Kd = 7.2 X 10(-8) M and n = 270 for factor V and Kd = 4.4 X 10(-7) M and n = 76 for factor Va. In contrast to prothrombin and factor X, factor V and factor Va demonstrated Ca2+-independent lipid binding. In addition, the number of factor V and factor Va molecules bound per vesicle was found to be dependent both on the phosphatidylserine content of the vesicle and the ionic strength of the buffer.  相似文献   

2.
Cells of monocytic differentiation can promote proteolytic activation of factor X following binding to the adhesive receptor Mac-1. We now show that the product, factor Xa, binds to a second receptor on these cells in a Ca2+-dependent reaction. Functionally, this results in the capacity to convert prothrombin to thrombin. The factor Xa receptor was identified by monoclonal antibody (7G12) reactive with plasma factor V/Va, but selected for reactivity with THP-1 cells. It reacted with 71.2 +/- 10.1% of monocytes, bound 153,600 +/- 33,500 sites/THP-1 cell, blocked binding of 125I-factor Xa, inhibited formation of thrombin, and immunoprecipitated 125I-factor Xa chemically cross-linked to its receptor on THP-1 cells. Following surface iodination or intrinsic labeling of THP-1 cells, antibody 7G12 immunoprecipitated a 74-kDa molecular species, similar to plasma factor Va light chain. Thus, monocytes and monocyte-like cells synthesize and express a factor V/Va-like receptor for factor Xa and organize a functional prothrombinase complex. The simultaneous membrane coexpression of a factor X receptor (Mac-1) and a factor Xa receptor as demonstrated by two-color flow cytofluorometric analysis of monocytes or THP-1 cells is consistent with a sequential receptor cascade for coordinated molecular assembly of coagulation proteins on specialized cells.  相似文献   

3.
Kinetic studies support the concept that protein substrate recognition by the prothrombinase complex of coagulation is achieved by interactions at extended macromolecular recognition sites (exosites), distinct from the active site of factor Xa within the complex. We have used this formal kinetic model and a monoclonal antibody directed against Xa (alphaBFX-2b) to investigate the contributions of surfaces on the proteinase to exosite-mediated protein substrate recognition by prothrombinase. alphaBFX-2b bound reversibly to a fluorescent derivative of factor Xa (K(d) = 17.1 +/- 5.6 nm) but had no effect on active site function of factor Xa or factor Xa saturably assembled into prothrombinase. In contrast, alphaBFX-2b was a slow, tight binding inhibitor of the cleavage of either prethrombin 2 or meizothrombin des-fragment 1 by prothrombinase (K(i)(*) = 0.55 +/- 0.05 nm). Thus, alphaBFX-2b binding to factor Xa within prothrombinase selectively leads to the inhibition of protein substrate cleavage without interfering with active site function. Inhibition kinetics could adequately be accounted for by a kinetic model in which prethrombin 2 and alphaBFX-2b bind in a mutually exclusive way to prothrombinase. These are properties expected of an exosite-directed inhibitor. The site(s) on factor Xa responsible for antibody binding were evaluated by identification of immunoreactive fragments following chemical digestion of human and bovine Xa and were further confirmed with a series of recombinantly expressed fragments. These approaches suggest that residues 82-91 and 102-116 in the proteinase domain contribute to alphaBFX-2b binding. The data establish this antibody as a prototypic exosite-directed inhibitor of prothrombinase and suggest that the occlusion of a surface on factor Xa, spatially removed from the active site, is sufficient to block exosite-dependent recognition of the protein substrate by prothrombinase.  相似文献   

4.
Yang L  Manithody C  Qureshi SH  Rezaie AR 《Biochemistry》2008,47(22):5976-5985
Structural and mutagenesis data have indicated that the 220-loop of thrombin is stabilized by a salt-bridge between Glu-217 and Lys-224, thereby facilitating the octahedral coordination of Na (+) with contributions from two carbonyl O atoms of Arg-221a and Lys-224. All three residues are also conserved in fXa and the X-ray crystal structure of fXa indicates that both Glu-217 and Lys-224 are within hydrogen-bonding distance from one another. To investigate the role of these three residues in the catalytic function of fXa and their contribution to interaction with Na (+), we substituted them with Ala and characterized their properties in both amidolytic and proteolytic activity assays. The results indicate that the affinity of all three mutants for interaction with Na (+) has been impaired. The mutant with the greatest loss of affinity for Na (+) (E217A or E217Q) also exhibited a dramatic impairment ( approximately 3-4 orders of magnitude) in its activity toward both synthetic and natural substrates. Interestingly, factor Va (fVa) restored most of the catalytic defect with prothrombin, but not with the synthetic substrate. Both Glu-217 mutants exhibited a near normal affinity for fVa in the prothrombinase assay, but a markedly lower affinity for the cofactor in a direct-binding assay. These results suggest that, similar to thrombin, an ionic interaction between Glu-217 and Lys-224 stabilizes the 220-loop of fXa for binding Na (+). They further support the hypothesis that the Na (+) and fVa-binding sites of fXa are energetically linked and that a cofactor function for fVa in the prothrombinase complex involves inducing a conformational change in the 220-loop of fXa that appears to stabilize this loop in the Na (+)-bound active conformation.  相似文献   

5.
Binding of bovine factor Va to phosphatidylcholine membranes.   总被引:1,自引:1,他引:0       下载免费PDF全文
The interaction of bovine factor Va with phosphatidylcholine membranes was examined using four different fluorescence techniques: 1) changes in the fluorescence anisotropy of the fluorescent membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH) to monitor the interaction of factor Va with 1,2-dimyristoyl-3-sn-phosphatidylcholine (DMPC) small unilamellar vesicles (SUVs), 2) changes in the fluorescence anisotropy of N-(lissamine rhodamine B sulfonyl) diacyl phosphati-dylethanolamine (Rh-PE) incorporated into SUVs prepared from 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC), 3) changes in the fluorescence anisotropy of fluorescein-labeled factor Va (labeled in the heavy chain) upon interaction with POPC SUVs, 4) fluorescence energy transfer from fluorescein-labeled factor Va to rhodamine-labeled POPC SUVs. In the first two sets of experiments, labeled lipid vesicles were titrated with unlabeled protein, whereas, in the latter two types of experiments, labeled factor Va was titrated with vesicles. For the weak binding observed here, it was impossible from any one binding experiment to obtain precise estimates of the three parameters involved in modeling the lipid-protein interaction, namely, the dissociation constant Kd, the stoichiometry of binding i, and the saturation value of the observable Rmax from any one experiment. However, a global analysis of the four data sets involving POPC SUVs yielded a stable estimate of the binding parameters (Kd of approximately 3.0 microM and a stoichiometry of approximately 200 lipids per bound factor Va). Binding to DMPC SUVs may be of slightly higher affinity. These observations support the contention that association of factor Va with a membrane involves a significant acidic-lipid-independent interaction along with the more commonly accepted acidic-lipid-dependent component of the total binding free energy.  相似文献   

6.
To identify sequences in prothrombin (fII) involved in prothrombinase complex (fXa.fVa.fII.phospholipids) assembly, synthetic peptides based on fII sequences were prepared and screened for their ability to inhibit factor Xa (fXa)-induced clotting of normal plasma. The fII peptide (PT473-487, homologous to chymotrypsin residues 149D-163) potently inhibited plasma clotting assays and prothrombinase activity, with 50% inhibition of 12 and 10 microm peptide, respectively. Prothrombinase inhibition by PT473-487 was factor Va (fVa)-dependent and sequence-specific, because the peptide did not inhibit fII activation in the absence of fVa, and a scrambled sequence peptide, PT473-487SCR, was not inhibitory. Peptide PT473-487 did not inhibit the amidolytic activities of fXa and thrombin, suggesting that the peptide did not alter the integrity of their active sites. To determine whether PT473-487 interacted directly with fVa, fluorescein-labeled fVa (Fl-fVa) was prepared. When PT473-487 was titrated into samples containing phospholipid-bound Fl-fVa, the peptide increased fluorescein anisotropy (EC(50) at 3 microm peptide), whereas the control peptide PT473-487SCR did not alter the anisotropy, suggesting a direct binding interaction between PT473-487 and Fl-fVa. These functional and spectroscopic data suggest that fII residues 473-487 provide fVa-binding sites and mediate interactions between fVa and fII in the prothrombinase complex.  相似文献   

7.
There is strong evidence that a functionally important cluster of amino acids is located on the COOH-terminal portion of the heavy chain of factor Va, between amino acid residues 680 and 709. To ascertain the importance of this region for cofactor activity, we have synthesized five overlapping peptides representing this amino acid stretch (10 amino acids each, HC1-HC5) and tested them for inhibition of prothrombinase assembly and function. Two peptides, HC3 (spanning amino acid region 690-699) and HC4 (containing amino acid residues 695-704), were found to be potent inhibitors of prothrombinase activity with IC(50) values of approximately 12 and approximately 10 microm, respectively. The two peptides were unable to interfere with the binding of factor Va to active site fluorescently labeled Glu-Gly-Arg human factor Xa, and kinetic analyses showed that HC3 and HC4 are competitive inhibitors of prothrombinase with respect to prothrombin with K(i) values of approximately 6.3 and approximately 5.3 microm, respectively. These data suggest that the peptides inhibit prothrombinase because they interfere with the incorporation of prothrombin into prothrombinase. The shared amino acid motif between HC3 and HC4 is composed of Asp(695)-Tyr-Asp-Tyr-Gln(699) (DYDYQ). A pentapeptide with this sequence inhibited both prothrombinase function with an IC(50) of 1.6 microm (with a K(D) for prothrombin of 850 nm), and activation of factor V by thrombin. Peptides HC3, HC4, and DYDYQ were also found to interact with immobilized thrombin. A recombinant factor V molecule with the mutations Asp(695) --> Lys, Tyr(696) --> Phe, Asp(697) --> Lys, and Tyr(698) --> Phe (factor V(2K2F)) was partially resistant to activation by thrombin but could be readily activated by RVV-V activator (factor Va(RVV)(2K2F)) and factor Xa (factor Va(Xa)(2K2F)). Factor Va(RVV)(2K2F) and factor Va(Xa)(2K2F) had impaired cofactor activity within prothrombinase in a system using purified reagents. Our data demonstrate for the first time that amino acid sequence 695-698 of factor Va heavy chain is important for procofactor activation and is required for optimum prothrombinase function. These data provide functional evidence for an essential and productive contribution of factor Va to the activity of prothrombinase.  相似文献   

8.
The kinetics of the activation of human prothrombin catalyzed by human prothrombinase was studied using the fluorescent alpha-thrombin inhibitor dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide (DAPA). Prothrombinase proteolytically activates prothrombin to alpha-thrombin by cleavages at Arg273-Thr274 (bond A) and Arg322-Ile323 (bond B). The differential fluorescence properties of DAPA complexed with the intermediates and products of human prothrombin activation were exploited to study the kinetics of the individual bond cleavages in the zymogen. When the catalyst was composed of prothrombinase (human factor Xa, human factor Va, synthetic phospholipid vesicles, and calcium ion), initial velocity studies of alpha-thrombin formation indicated that the kinetic constants for the cleavage of bonds A or B were similar to the constants that were obtained for the overall reaction (bonds A + B). The progress of the reaction was also monitored by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results indicated that the activation of human prothrombin catalyzed by prothrombinase proceeded exclusively via the formation of meizothrombin (bond B-cleaved) as an intermediate. Kinetic studies of the cofactor dependence of the rates of cleavage of the individual bonds indicated that, in the absence of the cofactor, cleavage at bond B would constitute the rate-limiting step in prothrombin activation. Progress curves for prothrombin activation catalyzed by prothrombinase and monitored using the fluorophore DAPA were typified by the appearance of a transient maximum, indicating the formation of meizothrombin as an intermediate. When factor Xa alone was the catalyst, progress curves were characterized by an initial burst phase, suggesting the rapid production of prethrombin 2 (bond A-cleaved) followed by its slow conversion to alpha-thrombin. Gel electrophoresis followed by autoradiography was used to confirm these results. Collectively, the results indicate that the activation of human prothrombin via the formation of meizothrombin as an intermediate is a consequence of the association of the cofactor, human factor Va, with the enzyme, human factor Xa, on the phospholipid surface.  相似文献   

9.
The binding of activated protein C to factors V and Va   总被引:8,自引:0,他引:8  
Activated protein C has been derivatized with the active site-directed fluorophore 2-(dimethylamino)-6-naphthalenesulfonylglutamylglycylarginyl chloromethyl ketone (2,6-DEGR-APC). Covalently modified activated protein C has been used to investigate the binding interactions of the protein to factors V and Va in the presence of phospholipid vesicles. The fluorescence polarization of the 6-dimethylaminonaphthalene-2-sulfonyl moiety increased saturably with increasing phospholipid concentrations in the presence or absence of factor V or Va. Differences in the limiting polarization values indicated distinguishable differences in the interactions between 2,6-DEGR-APC and phospholipid in the presence of factor V or Va. The dissociation constant calculated for the 2,6-DEGR-APC/phospholipid interaction (7.3 X 10(-8) M) was not significantly altered by factor V but was decreased to 7 X 10(-9) M in the presence of factor Va. The interaction between 2,6-DEGR-APC and factor V or Va was characterized by a 1:1 stoichiometry. The binding of 2,6-DEGR-APC to factor V or Va in the presence of phospholipid could be reduced in a competitive manner by diisopropylphosphofluoridate-treated activated protein C. An analysis of the displacement curves indicated that the binding of 2,6-DEGR-APC was indistinguishable from the binding of diisopropylphosphofluoridate-treated activated protein C. The interaction between 2,6-DEGR-APC and phospholipid-bound factor Va was further examined using the isolated subunits of factor Va. Fluorescence polarization changes observed with component E of Va (light chain) closely corresponded with the changes observed with factor Va, whereas isolated component D (heavy chain) had little influence on the binding of 2,6-DEGR-APC to phospholipid vesicles. The data presented are consistent with the interpretation that component E of factor Va contains a binding site for activated protein C.  相似文献   

10.
Proexosite I on prothrombin has been implicated in providing a recognition site for factor Va within prothrombinase. To examine whether hirudin-like sequences (659-698) on the cofactor contribute to this interaction, we expressed and purified two-chain FVa derivatives that were intracellularly truncated at the C terminus of the heavy chain: FVa709 (des710-1545), FVa699 (des700-1545), FVa(692 (des693-1545), FVa678 (des679-1545), and FVa658 (des659-1545). We found that FVa709, FVa699, FVa692, and FVa678 exhibited specific clotting activities that were comparable with plasma-derived and recombinant FVa. Additionally, kinetic studies using prothrombin revealed that the Km and kcat values for these derivatives were unaltered. Fluorescent measurements and chromatography studies indicated that FVa709, FVa699, FVa692, and FVa678 bound to FXa membranes and thrombin-agarose in a manner that was comparable with the wild-type cofactors. In contrast, FVa658 had an approximately 1% clotting activity and reduced affinity for FXa membranes (approximately 20-fold) and did not bind to thrombin-agarose. Surprisingly, however, FVa(658) exhibited essentially normal kinetic parameters for prothrombin when the variant was fully saturated with FXa membranes. Overall our results are consistent with the interpretation that any possible binding interactions between prothrombin and the C-terminal region of the FVa heavy chain do not contribute in a detectable way to the enhanced function of prothrombinase.  相似文献   

11.
Barhoover MA  Orban T  Bukys MA  Kalafatis M 《Biochemistry》2008,47(48):12835-12843
The prothrombinase complex catalyzes the activation of prothrombin to alpha-thrombin. We have repetitively shown that amino acid region (695)DYDY(698) from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg(271) by prothrombinase. We have also recently demonstrated that amino acid region (334)DY(335) is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334-335 and 695-698 as follows: factor V(3K) ((334)DY(335) --> KF and (695)DYDY(698) --> KFKF), factor V(KF/4A) ((334)DY(335) --> KF and (695)DYDY(698) --> AAAA), and factor V(6A) ((334)DY(335) --> AA and (695)DYDY(698) --> AAAA). The recombinant factor V molecules were expressed and purified to homogeneity. Factor Va(3K), factor Va(K4/4A), and factor Va(6A) had reduced affinity for factor Xa, when compared to the affinity of the wild-type molecule (factor Va(Wt)) for the enzyme. Prothrombinase assembled with saturating concentrations of factor Va(3K) had a 6-fold reduced second-order rate constant for prothrombin activation compared to the value obtained with prothrombinase assembled with factor Va(Wt), while prothrombinase assembled with saturating concentrations of factor Va(KF/4A) and factor Va(6A) had approximately 1.5-fold reduced second-order rate constants. Overall, the data demonstrate that amino acid region 334-335 together with amino acid region 695-698 from factor Va heavy chain are part of a cooperative mechanism within prothrombinase regulating cleavage and activation of prothrombin by factor Xa.  相似文献   

12.
13.
Factor V(a) is a cofactor for the serine protease factor X(a) that activates prothrombin to thrombin in the presence of Ca(2+) and a platelet membrane surface. A platelet membrane lipid, phosphatidylserine (PS), regulates the proteolytic activity of factor X(a) as well as the structure of prothrombin. Here we ask whether PS also regulates the structure and cofactor activity of factor V(a), which is a heterodimer composed of one heavy chain (A1-A2 domains) and one light chain (A3-C1-C2 domains). We use fluorescence, circular dichroism, equilibrium dialysis, and activity measurements to demonstrate the following: (1) Factor V(a) has four sites for dicaproyl-sn-glycero-3-phospho-L-serine (C(6)PS, a soluble form of PS); the heavy and light chains each bind two C(6)PS molecules. (2) In the absence of Ca(2+), only two sites remain, one in the heavy chain and another in the light chain. (3) Binding to these sites causes conformational changes evidenced by changes in intrinsic fluorescence and in CD spectra and changes in cofactor activity. (4) At least some of the four lipid binding sites are nonspecific with respect to soluble lipid species, but the site(s) that regulate(s) cofactor activity is (are) specific for C(6)PS, phosphatidic acid, or phosphatidyl(homo)serine and produce a response comparable to that seen with a PS-containing membrane. (5) Like Ca(2+), C(6)PS also mediates the interaction between factor V(a) heavy (V(a)-HC) and light (V(a)-LC) chains. We conclude that PS regulates both the cofactor and the enzyme of the prothrombin-activating complex.  相似文献   

14.
15.
The membrane-binding properties of Factor V and Factor Va were investigated using the lipophyllic, photoactivable probe 5-[125I]iodonaphthalene-1-azide. In the presence of vesicles composed of 75% phosphatidylcholine and 25% phosphatidylserine, both Factor V and Va were found to be labeled by the probe. The label was almost exclusively localized to the carboxyl-terminal-derived component E of Factor Va. The results are consistent with the interpretation that component E is the membrane binding subunit of Factor Va and that the interaction between Factor V or Factor Va and the membrane involves the penetration of the protein into the lipid bilayer.  相似文献   

16.
We have demonstrated that amino acids E (323), Y (324), E (330), and V (331) from the factor Va heavy chain are required for the interaction of the cofactor with factor Xa and optimum rates of prothrombin cleavage. We have also shown that amino acid region 332-336 contains residues that are important for cofactor function. Using overlapping peptides, we identified amino acids D (334) and Y (335) as contributors to cofactor activity. We constructed recombinant factor V molecules with the mutations D (334) --> K and Y (335) --> F (factor V (KF)) and D (334) --> A and Y (335) --> A (factor V (AA)). Kinetic studies showed that while factor Va (KF) and factor Va (AA) had a K D for factor Xa similar to the K D observed for wild-type factor Va (factor Va (WT)), the clotting activities of the mutant molecules were impaired and the k cat of prothrombinase assembled with factor Va (KF) and factor Va (AA) was reduced. The second-order rate constant of prothrombinase assembled with factor Va (KF) or factor Va (AA) for prothrombin activation was approximately 10-fold lower than the second-order rate constant for the same reaction catalyzed by prothrombinase assembled with factor Va (WT). We also created quadruple mutants combining mutations in the amino acid region 334-335 with mutations at the previously identified amino acids that are important for factor Xa binding (i.e., E (323)Y (324) and E (330)V (331)). Prothrombinase assembled with the quadruple mutant molecules displayed a second-order rate constant up to 400-fold lower than the values obtained with prothrombinase assembled with factor Va (WT). The data demonstrate that amino acid region 334-335 is required for the rearrangement of enzyme and substrate necessary for efficient catalysis of prothrombin by prothrombinase.  相似文献   

17.
18.
A steady-state kinetic analysis of the activation of bovine Factor X, by bovine Factor Xa, was undertaken. The activation was found to be dependent on the presence of divalent cations; Ca2+ showing the greatest stimulatory effect and Mn2+ exhibiting a lower degree of activity for this reaction. Although Sr2+ and Mg2+ were ineffective when present alone, each contributed synergistically to the activation rate at suboptimal levels of Ca2+. The effect of phospholipid (phosphatidylcholine:phosphatidylserine, 4:1, w:w) on the rate of activation and on the activation pathway was investigated. Phospholipid (PL) concentrations of up to 40 μm had no effect on the activation rate; whereas, concentrations of 40–180 μm were slightly inhibitory. In the absence of PL, the major product of the activation was Factor α-Xa, while in the presence of PL, lower-molecular-weight forms of Factor X (Factor β-X) and Factor Xa (Factor β-Xa were produced. At saturating levels of Ca2+, the Km app for the activation, at pH 7.4 and 37 °C, in the absence of PL, was found to be 0.6 ± 0.1 μm and the V was 1.7 ± 0.3 mol Factor X cleaved min?1 mol?1 Factor Xa. The corresponding values, in the presence of 90 μm PL, were 1.4 ± 0.2 μm and 2.2 ± 0.2 mol Factor X cleaved min?1 mol?1 Factor Xa.  相似文献   

19.
Bovine factor Va has been previously been shown to consist of heavy (M(r) = 94,000) and light chains (M(r) = 81,000), that interact in a manner dependent upon the presence of either calcium or manganese ions. In an attempt to understand the mechanism of subunit interaction we have studied the effects of temperature and ions on factor Va stability. The rates of formation of factor Va from isolated chains and dissociation were temperature-dependent with an energy of activation of 6.2 and 1.3 kcal mol-1, respectively. The yield of factor Va from isolated chains was inversely related to the amount of time the chains were incubated at 4 degrees C. Incubation of individual chains revealed that the heavy chain is cold-labile, an effect that is reversible. Manganese ion was observed to prevent the conversion to the inactive form. High salt tends to stabilize the two-chain structure of factor Va, but is inhibitory to its formation from isolated chains. High concentrations of either manganese or calcium ions also inhibited reconstitution of activity. The light chain, in particular, was sensitive to the presence of manganese or calcium ion. Heavy chain that had been cleaved by activated protein C had a weakened interaction with the light chain, and the resulting complex had no procoagulant activity. Cooling of the heavy chain to 4 degrees C enhanced its intrinsic fluorescence. Manganese ion prevented some of this enhancement. The heavy chain fluorescence returned to the room temperature value with a half-life of approximately 10 min. In the presence of manganese ion relaxation was accelerated. The intrinsic fluorescence of activated protein C-cleaved heavy chain was not increased when the temperature was decreased. These data suggest that the heavy chain can exist in two forms. Elevated temperature converts it to a form that can bind ions and have a productive interaction with the light chain. However, conditions that prevent the heavy chain from combining with the light chain also stabilize the two subunit structure, suggesting that the high affinity of the complex is due to conformational changes that occur after chain interaction.  相似文献   

20.
The binding isotherm of Ca2+ to bovine coagulation Factor VII has been examined at 25°C, and pH 7.4, by equilibrium ultrafiltration. The simplest model which describes the nonlinear isotherm obtained assumes that two strong Ca2+ sites exist, with an average KD of 0.1 ± 0.04 mm, and at least four weaker sites, with an average KD of 1.7 ± 0.3 mm. Concomitant with Ca2+ interaction, the intrinsic steady state fluorescence of bovine Factor VII decreases. Approximately 80% of the total fluorescence alteration occurs as a consequence of saturation of the two strong Ca2+ sites. The remainder of the fluorescence decrease takes place upon the total binding of three to four Ca2+ sites. This result indicates that an alteration in the environment of a tryptophan residue(s) occurs upon binding of Ca2+ to bovine Factor VII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号