首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of 4-hydroxynonenal (HNE), a chemotactic aldehyde produced by lipid peroxidation, was analysed on exocytosis in parallel with its effects on phosphoinositide-specific phospholipase C (PLC) both in undifferentiated HL-60 cells and in cells induced to differentiate toward the granulocytic cell line by 1.25% DMSO. Exocytosis was evaluated by the secretion of beta-glucuronidase from cells incubated at 37 degrees C for 10 min in the presence of various aldehyde concentrations. HNE action was more pronounced in DMSO-differentiated cells, where concentrations between 10(-8) and 10(-6) m were able both to trigger exocytosis and to strongly activate PLC; in both processes maximal stimulation was given by 10(-7) m. HNE-induced exocytosis was completely prevented by pertussis toxin and by the PLC inhibitor U73122. The comparison between HNE and formyl-methionyl-leucyl-phenylalanine (fMLP), used as a positive control, showed that the tripeptide produced an higher stimulation of exocytosis than the aldehyde; by contrast HNE induced a stronger increase of PLC activity. Wortmannin, an inhibitor of phosphatidylinositol-3-kinase (PI3K), strongly inhibited the exocytosis induced by fMLP, while it failed to induce a statistically significant inhibition of HNE action. We conclude that both compounds trigger exocytosis through a Ptx-sensitive G protein; the present data support the hypothesis that the lower ability of the aldehyde to trigger exocytosis as compared to fMLP might depend upon a low ability to activate PI3K, while PLC activation appears to play a key role in HNE-induced exocytosis.  相似文献   

2.
Our work analysed the effect of 4-hydroxynonenal (HNE), a chemotactic aldehydic end-product of lipid peroxidation, on exocytosis in HL-60 cells. We measured the release of beta-glucuronidase, an enzyme of azurophil granules, from the cells incubated at 37 degrees C for 10 min in the presence of HNE concentrations ranging between 10(-8) and 10(-5) M. The release of lactate dehydrogenase was assayed to test cell viability. HNE (1 microM) was able to induce a significant and strong stimulation of beta-glucuronidase secretion without leading to cytotoxic effects. The finding that HNE could increase the exocytotic secretion from HL-60 cells together with its known chemotactic property supports the hypothesis that this lipid peroxidation product may play an important role as a chemical mediator of inflammation; moreover it is noteworthy that micromolar concentrations of HNE have actually been found in exudates from acute and chronic inflammations.  相似文献   

3.
The effect of reduced glutathione (GSH) was studied on exocytosis triggered by 4-hydroxynonenal in HL-60 cells induced to differentiate towards the granulocytic cell line by dimethylsulfoxide; we measured beta-glucuronidase secretion from cells incubated at 37 degrees C in the presence of 5 mM GSH. GSH addition to the cell suspensions failed to induce any significant change of the exocytosis stimulated by HNE concentrations between 10(-8) and 10(-6) M. In contrast however, 5 mM GSH was able to fully prevent the release of lactate dehydrogenase observed in the presence of 50 microM HNE, a concentration much higher than that able to stimulate the exocytotic secretion. As the activation of phosphoinositide-specific phospholipase C (PLC) has been shown to play a major role in HNE-induced exocytosis, we studied the GSH effect on the breakdown of phosphatidylinositol-4,5-bisphosphate added to plasma membranes isolated from rat neutrophils and incubated in the presence of increasing concentrations of the aldehyde. In neutrophil membranes HNE induced a significant increase of PLC activity when used in the same concentrations as those able to stimulate beta-glucuronidase secretion in DMSO-differentiated HL-60 cells; the presence of 5 mM GSH failed to prevent its action. Our results suggest that these low aldehyde concentrations, which have actually been found in exudates, may increase tissue damage in inflammation through the release of lytic enzymes by neutrophils; it seems unlikely that their effects could be influenced by the levels of -SH groups present in the exudate and by its protein concentration.  相似文献   

4.
The mechanism of cAMP regulation of the respiratory burst was studied with HL-60 cells that had been DMSO-differentiated to a neutrophil-like cell. To evaluate the effects of known cAMP concentrations, cells were permeabilized with streptolysin-O. Chemotactic peptide (FMLP)-stimulated NADPH oxidase activity was inhibited by cAMP at concentrations higher than 3 microM. Because intracellular calcium was buffered, inhibitory actions of cAMP were not mediated by modulation of calcium concentration. Effects of cAMP on chemotactic peptide signal transduction mediated by phospholipase C, phospholipase D, and phospholipase A2 were then determined. Neither inositol phosphate generation (phospholipase C) nor phosphatidylethanol generation (phospholipase D activity in presence of 1.6% ethanol) induced by FMLP were significantly affected by cAMP. In contrast, cAMP potently inhibited FMLP-induced arachidonic acid mobilization (phospholipase A2). NADPH oxidase activity induced by exogenous arachidonic acid was not inhibited by cAMP. These results indicate that cAMP-mediated inhibition of arachidonic acid mobilization may be important in regulation of the respiratory burst.  相似文献   

5.
The effect of the lipid peroxidation product 4-hydroxynonenal and homologous aldehydes (4-hydroxyoctenal, 4-hydroxyundecenal, 4-hydroxytetradecenal and 4-hydroxypentadecenal) on migration and polarization of rat neutrophils was examined. The most effective aldehydes were 4-hydroxyoctenal and 4-hydroxypentadecenal, which stimulated oriented migration at ED50 = 1.4 X 10(-12) M and 1.3 X 10(-12) M, resp., whereas the other aldehydes had ED50 between 1 X 10(-7) and 6 X 10(-11) M. The peptides fMet-Phe and fMet-Leu-Phe used as positive controls had ED50 values of 4.2 X 10(-7) M and 4.5 X 10(-10) M resp. The 4-hydroxyalkenals induced only a small increase of the percentage of polarized cell and did not enhance the random migration. The effects of 4-hydroxyalkenals were only observed when the incubation buffer contained bovine serum albumin (BSA), in the absence of BSA neither the aldehydes nor the peptides exhibited chemotactic properties. Since the aldehydes easily react with the sulfhydryl groups of the BSA to form the S-alkylated BSA in an equilibrium reaction, the chemotactic substance could either be the free aldehyde or the BSA-aldehyde adduct. The adduct prepared from BSA and 4-hydroxynonenal was chemotactic at doses of 0.65 to 0.0065 mg/ml, when tested in the presence of unmodified BSA. Since the adduct released free 4-hydroxyalkenal during the assay in the reverse reaction, it can not be decided whether the active principle is the aldehyde itself or the aldehyde attached to the BSA. From the effective doses of the aldehydes (10(-7) to 10(-12)M) and the BSA-aldehyde adduct it appears very unlikely that the BSA itself gained chemotactic properties through the alkylation of its sulfhydryl groups by the aldehyde.  相似文献   

6.
《Free radical research》2013,47(2):55-66
The lipid peroxidation product 4-hydroxynonenal (HNE) and homologous aldehydes have been found to possess chemotactic activity for rat neutrophil leukocytes in the micromolar to picomolar range, depending on the compound. Such an activity is displayed only in the presence of albumin. The mechanisms by which aldehydes could interact with neutrophils are discussed. II is proposed that albumin acts as a carrier for the aldehyde and releases them to a neutrophil receptor. At concentrations around 10?4M, 4-hydroxyal-kenals have been found to exert toxic effects on a number of cells, including a strong depression of neutrophil motility. Finally, HNE has been found at chemotactic concentrations in the inflammatory site. The possibility that HNE is involved in the neutrophil influx into the inflammatory site is considered.  相似文献   

7.
The effects of 4-hydroxy-2,3-trans-nonenal (HNE) and nonanal on the activity of phosphoinositide-specific phospholipase C of rat neutrophils have been studied in parallel with their action on neutrophil oriented migration. Concentrations of HNE ranging from 10(-7) to 10(-5) M significantly stimulated the oriented migration of rat polymorphonuclear leukocytes. HNE stimulated both the basal and GTP gamma S-induced phospholipase C activity when used at concentrations between 10(-8) and 10(-6) M. Nonanal was devoid both of chemotactic activity and of any action on phospholipase C activity. The effect of GTP gamma S on the stimulation of phospholipase C induced by HNE was higher when the lowest dose of the aldehyde was used; the finding of an additive effect between 10(-8) M HNE and 2 x 10(-5) M GTP gamma S suggests that the two compounds may share a final common pathway of action. These results suggest that the chemotactic activity of HNE might be mediated, like that of other more well-known chemoattractants, by the stimulation of phosphoinositide-specific phospholipase C.  相似文献   

8.
Abstract In contrast to the phorbol ester oxidative response, which only develops during dimethyl-sulphoxide (DMSO)-induced differentiation of the human leukemic myeloblast HL-60 cell-line, the endotoxin response was observed in undifferentiated and differentiated cells. The Ca2+ response to endotoxin, detected in both differentiated and undifferentiated HL-60 cells, consisted of a transient 10–50 nM increase in intracellular Ca2+. A very slow, irreversible increase in intracellular Ca2+ was detected at high 1–100 μg/ml endotoxin concentrations, and this effect, and the inositol phosphate response, correlated with the surfactant activities of various endotoxins and Lipid A. Arachidonic acid and sodium arachidonate 1–50 μM stimulated a large 200–500 nM and transient Ca2+ response in undifferentiated HL-60 cells, which was significantly greater than that elicited by 1–50 μM eicosapentaenoic acid, and was not observed at similar concentrations of arachidonic acid methyl ester or myristic acid. These concentrations (1–50 μM) of arachidonic acid were observed to have surfactant activities on the plasma membrane. At lower arachidonic acid concentrations a marked potentiation of both Ca2+ and oxidative responses to the chemotactic peptide fMet-Leu-Phe was detected. It is possible that the arachidonic acid released during phospholipase A2 activation of neutrophils may be involved in cellular cross-talk and, at higher concentrations, in directly activating Ca2+ and superoxide production. It is also possible that previously reported effects of endotoxin at high concentrations are an vitro artefact of surfactant properties of endotoxin.  相似文献   

9.
4-Hydroxynonenal (HNE), a chemotactic aldehyde produced by lipid peroxidation, has been shown to trigger exocytosis in HL-60 cells induced to differentiate toward the granulocytic cell line by DMSO. In this work we studied HNE effects on the intracellular content of IL-8 and its release in DMSO-differentiated HL-60 cells. Cell incubation at 37 degrees C in the presence of 0.1 microM HNE induced a significant increase of IL-8 release after 30 min; the degree of HNE-induced IL-8 secretion became quite strong after 1 h, whereas the intracellular content showed no statistically significant changes. By contrast, 1 microM HNE induced a low decrease of the chemokine release; however, the used HNE concentrations failed to increase the release of lactate dehydrogenase (LDH), a test used to assay cell viability. The addition of 0.1 microM IL-8 to DMSO-differentiated HL-60 cells induced a strong increase of exocytosis, measured by beta-glucuronidase secretion. Exocytosis stimulation by IL-8 was much higher than that given by the aldehyde; the addition of various HNE concentrations to cells incubated in the presence of IL-8 decreased the secretion given by the cytokine alone. However, HNE-induced exocytosis was likely to be a direct action of the aldehyde and was not mediated through the stimulation of IL-8 release since HNE was unable to modify IL-8 secretion during the short time of 10 min used in the exocytosis assay.  相似文献   

10.
The lipid peroxidation product 4-hydroxynonenal (HNE) and homologous aldehydes have been found to possess chemotactic activity for rat neutrophil leukocytes in the micromolar to picomolar range, depending on the compound. Such an activity is displayed only in the presence of albumin. The mechanisms by which aldehydes could interact with neutrophils are discussed. II is proposed that albumin acts as a carrier for the aldehyde and releases them to a neutrophil receptor. At concentrations around 10-4M, 4-hydroxyal-kenals have been found to exert toxic effects on a number of cells, including a strong depression of neutrophil motility. Finally, HNE has been found at chemotactic concentrations in the inflammatory site. The possibility that HNE is involved in the neutrophil influx into the inflammatory site is considered.  相似文献   

11.
We used the HL-60 human promyelocytic leukemia cell line to analyze the surface expression of a family of adherence-related leukocyte surface antigens during myeloid differentiation. These antigens are composed of discrete alpha subunits, designated alpha L, alpha M, and alpha X, that are each noncovalently associated with a common beta subunit. Monoclonal antibodies directed against the individual subunits served as markers in both indirect immunofluorescence studies and immunoprecipitations from HL-60 cells differentiated preferentially towards mature granulocytes (DMSO, retinoic acid) or monocyte/macrophages (PMA, vitamin D3). In undifferentiated HL-60 cells, the alpha L and alpha X subunits were constitutively expressed, whereas the alpha M subunit was not. Differentiation of HL-60 cells along the granulocytic pathway with DMSO resulted in a marked increase in alpha M and minimal increases in alpha L and alpha X. The phenotypic expression of these antigens on DMSO-treated HL-60 cells closely resembled that on normal circulating PMN. Differentiation along the monocyte/macrophage pathway when using PMA or vitamin D3 resulted in major increases in alpha L and alpha X expression, as well as alpha M. These changes resulted in a surface phenotype characteristic of that present on human monocyte-derived macrophages. Triggering of undifferentiated HL-60 cells with PMA caused no increase in subunit expression, whereas stimulation of DMSO-differentiated HL-60 cells with PMA produced more than a 1.5-fold enhancement of both the alpha M and alpha X subunits, and stimulation of human PMN with PMA increased the surface expression of alpha M more than fourfold and alpha X subunit twofold. Stimulation with PMA produced no change in expression of the alpha L subunit in any of the three cell populations. These results indicate that the alpha subunits of this glycoprotein family can be selectively regulated during in vitro differentiation of a human promyelocytic leukemia cell line. Second, DMSO-differentiated HL-60 cells and human PMN possessed an intracellular pool of alpha M and alpha X, but not alpha L, that could be translocated to the surface. Thus, despite structural and functional relationships among the alpha subunits in this glycoprotein family, they undergo disparate surface expression and intracellular regulation during differentiation.  相似文献   

12.
Possible mutagens derived from lipids and lipid precursors   总被引:13,自引:0,他引:13  
Free radicals can initiate the oxidative decomposition of cellular membranes by lipid peroxidation. In this process a great variety of reactive aldehydes are produced intracellularly. Some of them, such as 4-hydroxynonenal or malonaldehyde, are biologically very active and might be involved in free radical-mediated DNA damage. A short review of the effects of aldehydic lipid peroxidation products on isolated DNA, their genotoxic effect in prokaryotes and eukaryotes and their in vivo carcinogenicity is given. Additionally own experiments on cytotoxic and genotoxic effects of 4-hydroxynonenal, 2-nonenal and nonanal in primary cultures of rat hepatocytes are reported. 4-Hydroxynonenal was highly cytotoxic at 100 microM, at subcytotoxic concentrations of 0.1-10 microM 4-hydroxynonenal increased the frequency of micronuclei, chromosomal aberrations and sister-chromatid exchange. 2-Nonenal and nonanal were not cytotoxic at 100 microM, the maximum dose tested. At 100 microM 2-nonenal led to a slight increase in micronuclei; chromosomal aberrations were not significantly altered. Nonanal had no detectable genotoxic effects. The level of endogenous 4-hydroxynonenal in tissues is in the range of 0.1-3.0 microM and can increase to 10 microM in conditions of oxidative stress; such levels appear to be sufficiently high to produce DNA damages, whether such damages are transient or irreversible is not known.  相似文献   

13.
Thrombin, a major procoagulant enzyme and growth factor, is also selectively chemotactic for monocytes and macrophages but not for neutrophils. This effect stands in contrast to other well-known chemotactic agents such as fMet-Leu-Phe, C5a fragments, and LTB4, which stimulate directed cell movement in both cell types, and have important physiological implications. The human leukemic cell line HL-60, which is capable of differentiating either along granulocytic or monocytic lineages, was therefore used to explore the development of this selective monocyte/macrophage chemotactic response to thrombin. Esterolytically inactive DIP-alpha-thrombin, as well as the thrombin-derived chemotactic peptide CB67-129, elicits a dose-dependent chemotactic response in HL-60 cells differentiated to monocytelike cells by treatment with 1,25(OH)2D3 (HL-60/mono), whereas no such response is evident in either undifferentiated HL-60 cells or in cells differentiated into granulocytes by treatment with DMSO (HL-60/gran). Similarly, early events which characterize stimulation of inflammatory cells by chemotactic agents are also evident, but only in monocyte-differentiated cells. In HL-60/mono, thrombin selectively stimulates rapid cytosolic Ca2+ elevation as well as rapid cytoskeletal association of cytosolic actin. Following thrombin stimulation, maximal actin association in these cells occurs within 30 sec (declining to basal levels at the end of 5 min), and maximal Ca2+ elevations are also evident within 15-20 sec, suggesting a temporal relationship between these two events. Thus, the events accompanying stimulation of HL-60/mono by thrombin are characteristic of those seen following stimulation of inflammatory cells by chemotaxins, with a major difference being the selectivity of thrombin as a chemotaxin for cells of macrophage/monocytic lineage. The selective chemotactic responsiveness of HL-60/mono to thrombin appears to relate to the development of specific receptors on these cells as part of monocytic differentiation: HL-60/mono (but HL-60/gran nor undifferentiated HL-60) are capable of significant specific 125-I-labeled alpha-thrombin-binding (ka approximately 20 nM), and possess an estimated 400,000 thrombin-binding sites per cell. Our findings further suggest that the thrombin response of HL-60 and particularly the expression of thrombin receptors on these cells may serve as a useful model system for exploring the biology of monocyte/macrophage differentiation.  相似文献   

14.
It has recently been demonstrated that the chemotactic peptide N-formyl-Met-Leu-Phe activates phospholipase D (PLD) in dimethyl sulfoxide-differentiated HL-60 granulocytes to produce phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) (Pai, J.-K., Siegel, M. I., Egan, R. W., and Billah, M. M. (1988) J. Biol. Chem. 263, 12472-12477). We now report that biologically active phorbol esters, a cell-permeable diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), and calcium ionophore A23187 are also potent inducers of PLD in these HL-60 granulocytes. HL-60 granulocytes have been selectively labeled in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P by incubating the cells with alkyl-[32P]lyso-phosphatidylcholine (PC). When these labeled cells are treated with phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate, OAG, or A23187, alkyl-[32P]PA is formed. Because cellular ATP has not been labeled with 32P, the formation of alkyl-[32P]PA conclusively demonstrates PLD activation by these agents. In the presence of 0.5% ethanol, phorbol esters, OAG, and A23187 also induce formation of alkyl-[32P]PEt, demonstrating that the activated PLD catalyzes transphosphatidylation between the phosphatidyl moiety of the alkyl-[32P]PC and ethanol. Formation of alkyl-[32P]PA and alkyl-[32P]PEt in response to these various agents occurs in a time- and dose-dependent manner and exhibits differential Ca2+ requirements. Based on experiments with both [3H]alkyl-PC and alkyl-[32P]PC, it is concluded that alkyl-PA and alkyl-PEt formed in response to PMA, OAG, or A23187 are derived exclusively from PLD action on alkyl-PC. Furthermore, subthreshold concentrations of PMA (0.5-2.0 nM) or OAG (1.0-25 microM) combined with subthreshold levels of A23187 (15-60 nM) induce the formation of alkyl-[32P]PA and alkyl-[32P]PEt, suggesting that receptor-mediated activation of PLD might involve cooperative interactions between Ca2+ and diglyceride. Although PLD is activated by agents that also activate protein kinase C, the protein kinase C inhibitor, K252a, inhibits PMA-induced protein phosphorylation but causes only partial inhibition of PLD activation. We conclude that phorbol esters, OAG, and A23187 activate PLD in HL-60 granulocytes via protein kinase-independent as well as protein kinase-dependent mechanisms.  相似文献   

15.
Retinoic acid, a derivative of vitamin A, is shown to inhibit the levels of inositol phosphates and diacylglycerol by 25-30% when added to intact HL-60 cells at concentrations which induce differentiation. The onset of inhibition occurs after 10 min and reaches a maximum at 45 min. To study the mechanism and the site of action of retinoic acid, the activity of the phosphatidylinositol bisphosphate-specific phospholipase C was studied in cells permeabilized with streptolysin O and in membrane preparations. Phospholipase C activity was stimulated either via the guanine nucleotide regulatory protein (G-protein) or directly by Ca2+. Retinoic acid treatment, in a time- and concentration-dependent manner, led to a decrease in phospholipase C activity when stimulated with either GTP gamma S or NaF, both of which activate the enzyme via the G-protein. By contrast, it had no effect on the enzyme activity when stimulated with Ca2+ alone. This indicates that retinoic acid interferes with the coupling of the G-protein and phospholipase C. A relationship between the inhibition of phospholipase C activity and the induction of differentiation by retinoic acid was investigated. Only a small inhibition of GTP gamma S-stimulated phospholipase C activity was observed when an analogue of retinoic acid, etretine or Ro10-1670, with low differentiating activity, was used. Moreover, no inhibition of the GTP gamma S-stimulated phospholipase C activity was observed in an HL-60 sub-line resistant to retinoic acid. These results suggest that phospholipase C inhibition is an important step in the induction of differentiation.  相似文献   

16.
《Free radical research》2013,47(1-5):279-284
In order to evaluate the pro-hemolytic action exerted by different classes of biogenic aldehydes, normal red cells obtained from human beings of both sexes were incubated at 37°C under iso or hypo-osmotic conditions in the presence of hydroxyalkenals or alkanals, in a concentration compatible with those actually recovered during red cell lipid peroxidation. None of the tested aldehydes showed a direct hemolytic effect, i.e. red cell lysis in iso-osmotic conditions. Conversely, almost all assayed alkanals and hydroxyalkenals exibited a pre-lytic damage of human erythrocytes, as detected in the red cells suspended in hypo-osmotic medium. The highest pro-hemolytic effect was displayed by hexanal, nonanal, 2-nonenal and 4-hydroxynonenal.  相似文献   

17.
We have used the polymerase chain reaction to isolate and clone the cDNA encoding the human C5a receptor, and have injected the cDNA-derived receptor cRNA into Xenopus laevis oocytes for functional characterization of the receptor protein. Receptor activity was determined either electrophysiologically by measuring the agonist-dependent opening of [Ca2+]i-dependent Cl- channels, or by analysing the agonist-dependent efflux of 45Ca2+ from the oocytes. Using both methodologies, injection of pure C5a receptor cRNA failed to confer C5a sensitivity on the oocytes. In contrast, marked responses to C5a were observed when the receptor cRNA was supplemented with poly(A)+ RNA isolated from undifferentiated HL-60 cells, which is devoid of C5a receptor mRNA. Binding studies using radioiodinated C5a revealed that the C5a receptor polypeptide was in fact synthesized and targeted to the oocyte plasma membrane in oocytes injected with receptor cRNA alone, and that the level of receptor expression was not influenced by coinjection of poly(A)+ RNA from undifferentiated HL-60 cells. These results strongly suggest that the human C5a receptor requires a specific cofactor(s) lacking in Xenopus oocytes but present in undifferentiated HL-60 cells, to generate intracellular signals in oocytes. Identification and characterization of this factor will provide important information about the molecular mechanisms by which G-protein-coupled receptors activate phospholipase C.  相似文献   

18.
We have previously determined that human neutrophils and monocytes, as well as neutrophil/monocyte progenitor cells, express a subtype of P2-purinergic receptors (for ATP) which activate the inositol phospholipid signalling system. In the present study, membranes prepared from HL-60 promyelocytic leukemia cells were used to examine the mechanism by which these ATP receptors activate phosphatidylinositol-specific phospholipase C (PI-PLC) under defined in vitro conditions. Micromolar concentrations of the receptor agonists ATP, UTP, and ATP gamma S stimulated the GTP-dependent formation of inositol bisphosphate (IP2) and inositol trisphosphate (IP3) in washed membranes prepared from undifferentiated HL-60 cells prelabeled with [3H]inositol. The stimulatory effects of these nucleotides on PI-PLC appeared to be mediated through a GTP binding protein since minimal inositol polyphosphate accumulation was observed in the absence of guanine nucleotides. The increased inositol polyphosphate formation triggered by these nucleotide receptor agonists did not result from inhibition of GTP breakdown. Neither was it a consequence of increased [3H]polyphosphatidylinositol levels resulting from enhanced activity of membrane-associated PI- or PIP-kinases. Instead, the stimulated phospholipase activity was apparently receptor-mediated. The rank order of potency observed in these in vitro membrane assays (ATP = UTP greater than ATP gamma S much greater than TTP greater than CTP much greater than beta, gamma-CH-ATP) was similar to that observed with intact HL-60 cells. This order of potency appears to distinguish the P2-purinergic receptors expressed by human phagocytic leukocytes from the P2 gamma-purinergic receptors which activate PI-PLC in turkey erythrocyte membranes.  相似文献   

19.
《Free radical research》2013,47(2):81-89
4-hydroxynonenal (HNE) is one of the major breakdown products of cellular lipid peroxidation. Its effects on proliferation, ornithine decarboxylase (ODC) activity and DNA synthesis have been investigated in leukemic cell lines. The cells were incubated for 1 hour with different aldehyde concentrations, then washed and resuspended in medium with fresh foetal calf serum. HNE concentrations ranging from 10-5 to 10-6 M significantly inhibited ODC activity when induced by addition of fresh foetal calf serum both in K562 and HL-60 cells. 3H-Thymidine incorporation in K562 cells was also inhibited from 6 to 12 hours after the treatment. The same HNE concentrations did not inhibit ODC activity when added to cytosol, thus a direct action on the enzyme can be excluded. Moreover, HNE did not affect the half-life of ODC, so that a specific effect on ODC synthesis may be supposed. These data indicate a reduction of proliferative capacity of the cells and are consistent with the possibility that HNE, at concentrations close to those found in normal cells, plays a role in the control of cell proliferation.  相似文献   

20.
A glycerophosphonocholine analog of the ether-linked lipid, rac-1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine (ET-18-OCH3-GPC), was synthesized in which the head group is nonhydrolyzable by phospholipase C. The phosphonate analog used in this study is rac-3-octadecyloxy-2-methoxy-propyl-phosphonocholine, C18H37OCH2CH(OCH3)CH2P(O)(O)OCH2CH2N+(CH3)3. The activity of the synthetic phosphonate was tested in the human leukemic cell line, HL-60, and the human undifferentiated cervical carcinoma, C-41. The glycerophosphonocholine inhibited [3H]thymidine uptake by HL-60 cells with an EC50 value of 5-7 microM. The glycerophosphate ET-18-OCH3-GPC had an EC50 value of approximately 2 microM against HL-60 cells. The EC50 values estimated from cell viability experiments were similar to that for [3H]thymidine uptake. The EC50 value for C-41 cells was about 10-15 microM. The data demonstrate that the glycerophosphonocholine is a promising anti-cancer drug for the treatment of both leukemia and solid tumors. Furthermore, the data demonstrate that phospholipase C-catalyzed hydrolysis of ET-18-OCH3-GPC does not play an important role in the cytotoxic action of the ether-linked glycerolipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号