首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Six mutant strains of Bacillus subtilis hypersensitive to N-methyl-N-nitro-N-nitrosoguanidine (MNNG) were shown to be deficient in the adaptive response to MNNG and termed ada mutants (Morohoshi and Munakata 1985). All the mutations mapped between the attSPO2 and lin loci on the chromosome. The mutant and wild-type (ada +) cells contained similar constitutive levels of O6-methylguanine-DNA methyltransferase activity. Pretreatment with low concentrations of MNNG increased the activity about nine-fold in the ada + cells, while it uniformly decreased the activity in the ada cells. The pretreatment of three mutants (ada-3, ada-4, and ada-6) as well as ada +, augumented the activity of methylpurine-DNA glycosylase and rendered the cells resistant to the lethal and mutagenic effects of N-propyl- or N-butyl-N-nitro-N-nitrosoguanidine. With the rest of the mutant strains (ada-1, ada-2, and ada-5), neither of such responses was elicited by the pretreatment. Thus, the former ada strains seem to have a defect in the gene specifically involved in the induction of the methyltransferase, while the latter ada strains have a defect in the gene controlling the adaptive response as a whole.Abbreviations MNNG N-methyl-N-nitro-N-nitrosoguanidine - ENNG N-ethyl-N-nitro-N-nitrosoguanidine - PNNG N-propyl-N-nitro-N-nitrosoguanidine - MNU N-methyl-N-nitrosourea - MMS methyl methanesulphonate  相似文献   

2.
Summary DNA base sequence changes induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis have been determined for the Escherichia coli gpt gene stably incorporated in a chromosome of Chinese hamster ovary cells and in the chromosome of both growing and starving E. coli cells, instead of on a plasmid as in most previous studies. In the three cases, nearly all mutations were G: C to A: T transitions, with a 2-to 4-fold higher mutation rate, compared to other sites, at guanines flanked on the 5 side by another guanine. Mutagenic hot spots in these experiments were less prominent than in published results for MNNG mutagenesis of gpt and of other genes. A suggested explanation involves repair of O6meG. At low levels of mutagenic products, most are repaired and even small differences in the repair rates leads to large differences in the relative amounts of residual O6meG at various sites; in contrast, at high levels of mutagenic products there is little effect of repair on the distribution.Abbreviations MNNG N-methyl-N-nitro-N-nitrosoguanidine - MNU N-methyl-N-nitrosourea - O6meG O6-methylguanine - N7meG N7-methylguanine - CHO Chinese hamster ovary  相似文献   

3.
Chlorate-resistant mutants of the filamentous cyanobacterium,Anabaena doliolum, were isolated by N-methyl-N-nitro-N-nitrosoguanidine (MNNG)1 mutagenesis. Three classes of mutants were obtained that were altered either in the nitrate uptake activity or nitrate reductase enzyme activity or both. These results suggest that the genetic determinant of the uptake system was distinct from that of the reductase system.Uptake studies of nitrite and ammonium and rate of nitrite reductase activity in the mutants revealed that the nitrite and ammonium metabolisms were not affected by this mutation.Both nitrate and chlorate acted like a pair of antagonists, with nitrate protecting the growth against chlorate with increase in its concentration; similarly, increasing chlorate concentrations counteracted the growth-protective action of nitrate.  相似文献   

4.
Summary Shoots regenerated from auxin-auxotrophic variants of Nicotiana plumbaginifolia were inviable when cultured in vitro in the absence of auxin. Variant shoots survived longer when grafted to wild-type stocks but eventually died after a characteristic pattern of degeneration. The auxin auxotrophs were isolated after mutagen treatment by a total isolation method as infrequent variants amongst haploid protoplast-derived cell colonies. The variants responded to several active auxins but, unlike the wild type, not to cytokinin. Plant regeneration from variant cultures ceased at early stages of shoot formation after complete withdrawal of auxin from the medium.Abbreviations BAP 6-benzylaminopurine - BUdR 5-bromo-2-deoxyuridine - 2,4-D 2,4-dichlorophenoxyacetic acid - DMSO dimethyl sulfoxide - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MNNG N-methyl-N-nitro-N-nitrosoguanidine - NAA 1-naphthaleneacetic acid  相似文献   

5.
The coding sequence for human poly(ADP-ribose) polymerase was expressed inducibly in Saccharomyces cerevisiae from a low-copy-number plasmid vector. Cell free extracts of induced cells had poly(ADPribose) polymerase activity when assayed under standard conditions; activity could not be detected in non-induced cell extracts. Induced cells formed poly(ADP-ribose) in vivo, and levels of these polymers increased when cells were treated with the alkylating agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG). The cytotoxicity of this agent was increased in induced cells, and in vivo labelling with [3H]adenine further decreased their viability. Increased levels of poly(ADP-ribose) found in cells treated with the alkylating agent were not accompanied by lowering of the NAD concentration.  相似文献   

6.
Twenty-nine independent mutants of Clostridium pasteurianum ATCC 6013, including several auxotrophs and UV resistants, have been isolated and characterized. The protoplast formation and regeneration procedure of Minton and Morris (1983) has also been successfully tried with some of these newly obtained mutants. The availability of these mutants together with the possibility of protoplast formation and regeneration will be useful for the development of a genetic exchange system in this species.Abbreviations CFU colony forming unit - DCCP dicyclohexyl carbodiamide - EMS ethylmethane sulfonate - IB isotonic buffer - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PEG polyethylene glycol - UV ultraviolet  相似文献   

7.
Nine human tumor cell lines derived from both epithelial and mesenchymal tumors exhibited either an anchorage-independent growth non-tumorigenic phenotype or an anchorage-independent tumorigenic phenotype. Transformed epithelial cell lines with the non-tumorigenic phenotype could be converted to a progressively growing tumor phenotype following treatment with either methylmethane sulfonate (MMS) or N-methyl-N-nitro-N-nitrosoguanidine (MNNG). In contrast, sarcoma derived cell lines with a non-tumorigenic phenotype could be converted to a progressively growing tumor phenotype only with MNNG. SV40 immortalized HET-1A non-tumorigenic phenotype cells could be converted to a progressively growing tumorigenic phenotype, infrequently, when treated with MNNG, but not MMS. Progressively growing tumors produced by either MMS or MNNG treated non-tumorigenic phenotypes exhibited metastatic potential in nude mice. Chemically treated HET-1A cells acquired the ability to produce tumor in mice but the tumor did not exhibit metastatic potential. In contrast, populations of tumorigenic cells were not rendered more biologically aggressive after treatment with either MMS or MNNG; i.e., the latency period for tumor development was not accelerated and the tumors did not exhibit metastatic potential. These results suggest that the biological effects of MMS and MNNG on non-tumorigenic, tumorigenic and immortalized cell lines are phenotype specific.Abbreviations AIG anchorage-independent growth - DMSO dimethyl sulfoxide - FBS fetal bovine serum - GM growth medium - MEM Eagle's minimum essential medium - MMS methylmethane sulfonate - MNNG N-Methyl-N-Nitro-N-Nitrosoguanidine - PDL population doubling - SCC squamous cell carcinoma  相似文献   

8.
Summary An overview is presented on strategies of cloning mammalian DNA repair genes. Complementation of human and rodent repair defects and mutagen hypersensitivities by chromosome and DNA mediated gene transfer and mRNA microinjection is described, and the features of the cloned human DNA repair genes are summarized. It is shown that transfection of repair deficient cell lines with cloned bacterial and human genes may give rise to protection from the genotoxic effects of mutagens.Abbreviations MGMT O6-methylguanine-DNA methyltransferase - MNNG N-methyl-N-nitro-N-nitrosoguanidine - HeCNU N-hydroxyethyl-N-chloroethylnitrosourea - MMC mitomycin C - MPA mycophenolic acid - ERCC excision-repair cross-complementing rodent UV-complementation group - UV ultraviolet light - XP xeroderma pigmentosum - CHO Chinese hamster ovary Dedicated to Prof. Dr. U. Hagen on the occasion of his 65th birthdayExtended version of an oral presentation given at the workshop Molecular Radiation Biology. German Section of the DNA Repair Network, München-Neuherberg, 21.–23.3.90  相似文献   

9.
Ten previously unreported oligosaccharides have been purified from the urines of human subjects using a combination of gel filtration, ion exchange, and thin-layer chromatographies. Their structures were determined by direct probe mass spectrometry, methylation analysis, and proton NMR spectroscopy of the permethylated oligosaccharide alditols.On the basis of composition, the oligosaccharides could be divided into three groups. Five oligosaccharides containing glycerol were characterized as glucosyl1-1glycerol; glucosyl1-1glycerol; galactosyl1-1glycerol; glucosyl-1-1(fucosyl-1-2)glycerol and/or fucosyl-1-1(glucosyl-1-2)glycerol; and glucosyl-1-1(galactosyl-1-2)glycerol or galactosyl-1-1(glucosyl-1-2)glycerol. Four inositol-containing oligosaccharides were characterized as galactosyl1 (fucosyl1)inositol,N-acetylgalactosaminyl1 (fucosyl1)inositol, fucosyl1-2galactosyl1 (N-acetylgalactosaminyl1)inositol and fucosyl1-2galactosyl1-4-N-acetylglucosaminyl1(N-acetylgalactosaminyl1)inositol. Finally, galactosyl1-3(fucosyl1-2)galactosyl1-6galactosyl1-4(fucosyl1-3)glucose, an oligosaccharide with glucose at its reducing end, was tentatively identified. The significance and possible origins of the carbohydrate structures are discussed.  相似文献   

10.
Aminopterin-resistant cell lines of maize were isolated by two different procedures of callus selection and by plating suspension cultures on drugcontaining medium after mutagen treatment. Efficiencies of different methods of variant selection were compared. Four aminopterin-resistant cell lines were shown to be 10–40 times more resistant than the parental cell line, and they were also resistant to another folate analog, methotrexate. The results suggest that alterations in at least three different cell properties could be responsible for resistance; 1) increased dihydrofolate reductase activity, 2) altered aminopterin sensitivity of dihydrofolate reductase, and 3) reduced drug uptake. One of the resistant cell lines showed more than one alteration, but its resistance proved to be unstable. The results suggest that stable changes which may or may not be of genetic origin and also unstable physiological changes or a combination of both could lead to aminopterin resistance in maize cell cultures.Abbreviations AMPT aminopterin - MTX methotrexate - DHFR dihydrofolate reductase - MNNG N-methyl-N-nitro-N-nitrosoguanidine - EMS ethylmethane sulfonate Research supported by the College of Agriculture and Life Sciences and by the Graduate School, University of Wisconsin Madison, Wis, USA  相似文献   

11.
J. Diez  A. Chaparro  J. M. Vega  A. Relimpio 《Planta》1977,137(3):231-234
In the green alga Ankistrodesmus braunii, all the activities associated with the nitrate reductase complex (i.e., NAD(P)H-nitrate reductase, NAD(P)H-cytochrome c reductase and FMNH2-or MVH-nitrate reductase) are nutritionally repressed by ammonia or methylamine. Besides, ammonia or methylamine promote in vivo the reversible inactivation of nitrate reductase, but not of NAD(P)H-cytochrome c reductase. Subsequent removal of the inactivating agent from the medium causes reactivation of the inactive enzyme. Menadione has a striking stimulation on the in vivo reactivation of the inactive enzyme. The nitrate reductase activities, but not the diaphorase activity, can be inactivated in vitro by preincubating a partially purified enzyme preparation with NADH or NADPH. ADP, in the presence of Mg2+, presents a cooperative effect with NADH in the in vitro inactivation of nitrate reductase. This effect appears to be maximum at a concentration of ADP equimolecular with that of NADH.Abbreviations ADP Adenosine-5-diphosphate - AMP Adenosine-5-monophosphate - ATP Adenosine-5-triphosphate - FAD Flavin adenine dinucleotide - FMNH2 Flavin adenine mononucleotide, reduced form - GDP Guanosine-5-diphosphate - MVH Methyl viologen, reduced form - NADH Nicotinamide adenine dinucleotide, reduced form - NADPH Nicotinamide adenine dinucleotide phosphate, reduced form  相似文献   

12.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   

13.
Summary To get an idea about the response of a living system, exposed to gradually increasing doses of a mutagen for several generations, a population of V-79 Chinese hamster cells was exposed repeatedly to gradually increasing doses of UV radiation. Each dose was followed by a variable period of growth for at least ten generations. After treatment the cells were not mutable by UV radiation, though MNNG was capable of producing mutations with the same efficiency as in the untreated cells. In terms of viability, the treated cells behaved exactly as the untreated ones for both UV and MNNG. The observed behaviour of the treated cells was found to be stable for during the 50 passages studied.Abbreviations DMSO dimethylsulphoxide - Aza 8-Azaguanine - MEM minimal essential medium - PBS phosphate buffered saline - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

14.
Involvement of mercury methylation in microbial mercury detoxication   总被引:3,自引:0,他引:3  
A vitamin B12 requiring strain was isolated fromChlostridium cochlearium T-2 C which is known to synthesize various types of vitamin B12 including methylcobalamin and has an ability to methylate inorganic mercury. The vitamin B12 auxotroph lacking the mercury-methylating activity showed higher sensitivity to inorganic mercury than its original strain, while the sensitivity of both strains to methylmercury was relatively low and essentially the same. These data seem to present affirmative evidence to postulate the physiological role of methylcobalamin-dependent methylation of mercury to be a process of detoxication.Abbreviation MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

15.
Summary Streptomycin-resistant colonies were isolated from protoplast cultures of haploid Nicotiana plumbaginifolia based on their ability to green in medium containing 1 mg/ml streptomycin sulfate. The frequency of resistant colonies was 0.9×10–5 in nonmutagenized culture, and increased ten-fold following treatment of culture with 10 g/ml N-methyl-N-nitro-N-nitrosoguanidine. Of a total of 52 resistant clones isolated, 2 gave rise to haploid, 15 to diploid, and 3 to tetraploid plants upon transfer of calli to differentiation medium. Leaf-segment and protoplast assays showed that all diploid regenerates were resistant to streptomycin but sensitive to chloramphenicol, kanamycin, lincomycin, neomycin, and spectinomycin. Plants in most diploid clones were fertile and able to set seeds when self-fertilized and crossed reciprocally to wild-type plants. Inheritance of streptomycin resistance was studied in the diploid clones and, without exception, the resistance was transmitted maternally. Comparative studies of the ultrastructure of organelles and protein synthesis in isolated chloroplasts between wild-type and resistant clones in the presence of streptomycin suggest that streptomycin resistance is controlled by chloroplasts.  相似文献   

16.
Studies were conducted to assess the effects of inducers of hepatic mixed function oxidases on DNA repair responses to 13 different genotoxic agents in hepatocytes from adult male mice. Phenobarbital pretreatment increased DNA repair elicited by diethylnitrosamine but had no effect on responses to the other compounds. Pretreatment with p,p-dichlorodiphenyltrichloroethane, 3-methylcholanthrene or -naphthoflavone induced the DNA repair responses to a variety of activation-dependent carcinogens. DNA repair responses to the direct-acting alkylating agents methyl methanesulfonate and N-methyl-N-nitro-N-nitrosoguanidine were not increased by any of the pretreatments, which indicated that the pretreatment-related enhancement of responses to the other compounds was due to induction of their metabolic activation. Taken together, the findings suggest that Aroclor, or other pretreatments, may increase the sensitivity of the hepatocyte DNA repair assay for detecting the genotoxicity of certain compounds; however, the potential benefit may be limited due to specific features of the assay. In contrast, Aroclor pretreatment did not produce any enhancement of in vivo DNA repair elicited by dimethylnitrosamine, diethylnitrosamine, o-aminoazotoluene, 2-acetylaminofluorene, 3-methylcholanthrene or aflatoxin B1, and thus does not appear to be useful for improving the sensitivity of the in vivo/in vitro assay.Whereas the amount of DNA repair produced by dimethylnitrosamine was not increased by classical inducers of liver microsomal enzymes, pretreatment with pyrazole greatly augmented in vitro and in vivo DNA repair responses to dimethylnitrosamine; responses to diethylnitrosamine were increased to a lesser degree by pyrazole pretreatment. The effects of lactational exposure to enzyme inducing agents on DNA repair in neonatal hepatocytes was also investigated.Abbreviations 2-AAF 2-acetylaminofluorene - 4-AB 4-aminobiphenyl - 6-AC 6-aminochrysene - AFB aflatoxin B1 - ARO Aroclor 1254 - o-AT o-aminoazotoluene - B(a)P benzo[a]pyrene - B-NF beta-naphthoflavone - BZ benzidine - DDT p,p-dichlorodiphenyltrichloroethane - DDE p,p-dichlorodiphenyldichloroethylene - DEN diethylnitrosamine - DMBA 7,12-dimethylbenzanthracene - DMN dimethylnitrosamine - 3-MC 3-methylcholanthrene - MMS methyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - 2-NA 2-naphthylamine - NNG net nuclear grains - PB phenobarbital - PYR pyrazole  相似文献   

17.
The effect of chilling on enzymes, substrates and products of sulfate reduction, gultathione synthesis and metabolism was studied in shoots and roots of maize (Zea mays L.) genotypes with different chilling sensitivity. At full expansion of the second leaf, chilling at 12 °C inhibited dry weight increase in shoots and roots compared to controls at 25 °C and induced an increase in adenosine 5-phosphosulfate sulfotransferase and -glutamylcysteine synthetase (EC 6.3.2.2) activity in the second leaf of all genotypes tested. Glutathione synthetase (EC 6.3.2.3) activity was about one order of magnitude higher than -glutamylcysteine synthetase activity, but remained unchanged during chilling except for one genotype. During chilling, cysteine and glutathione content of second leaves increased to significantly higher levels in the two most chilling-tolerant genotypes. Comparing the most tolerant and most sensitive genotype showed that chilling induced a greater incorporation of35S from [35S]sulfate into cysteine and glutathione in the chilling-tolerant than in the sensitive genotype. Chilling decreased the amount of35S-label incorporated into proteins in shoots of both genotypes, but had no effect on this incorporation in the roots. Glutathione reductase (EC 1.6.4.2) and nitrate reductase (EC 1.6.6.1) activity were constitutively higher in the chilling-tolerant genotypes, but showed no changes in most examined genotypes during 3 d at 12 °C. Our results indicate that in maize glutathione is involved in protection against chilling damage.Abbreviations APSSTase adenosine 5-phosphosulfate sulfotransferase - EC -glutamylcysteine - GR glutathione reductase - OSH glutathione - NR nitrate reductase We thank M. Suter for preparing [35S]adenosine 5-phosphosulfate, Dr. A. Fleming (both our Institute) for correcting the English and M. Soldati (Eschlikon, Switzerland) for his help with the plant material. This work was supported by COST 814 Crop development for the wet and cool regions of Europe.  相似文献   

18.
Summary DNA sequencing was used to determine the specific types of DNA base changes induced following in vivo exposure of Escherichia coli to the ethylating agent N-ethyl-N-nitro-N-nitrosoguanidine (ENNG) and the hydroxyethylating agent 1-(2-hydroxyethyl)-1-nitrosourea (HENU) using the xanthine guanine phosphoribosyltransferase (gpt) gene as the genetic target. We observed that 22/30 of the ENNG-induced mutations were GCAT transitions, 4/30 were ATGC transitions, 3/30 were ATTA transversions, and 1/30 was an ATCG transversion. We observed that 37/40 HENU-induced mutations were GCAT transitions and that the remaining 3/40 were ATGC transitions. A majority of the GCAT transitions induced by ENNG and HENU (68% and 73%, respectively) occurred at the second guanine of the sequence 5-GG(A or T)-3; this sequence specificity was similar to that previously seen with the alkylating agents N-methyl- and N-ethyl-N-nitrosourea (MNU and ENU) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG). A DNA strand preference for the GA changes (antisense strand), previously noted for MNU, ENU, and MNNG, was observed following exposure to HENU and ENNG. The ATGC transitions induced by ENNG, HENU, and ENU also exhibit a sequence specificity with 13/13 mutations occurring at the T of the sequence 5-NTC-3. A strand preference was not apparent for these mutations.  相似文献   

19.
Summary Chlorate resistant mutants of the cyanobacterium Nostoc muscorum isolated after N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis were found to be defective/blocked in nitrate reductase (NR).The parent strain possessed active NR in the presence of nitrogen as nitrate and only basal levels of activity in ammonia and N-free grown cultures. Addition of ammonia suppressed the NR activity in the parent strain whereas addition of L-methionine DL-sulphoximine (MSX) restored NR activity. A similar repression by ammonia, glutamine and derepression with MSX were also observed for nitrogenase synthesis.One class of mutants lacked NR activity (nar -) whereas the specific activity of NR was low in another class of mutants (nar def). Unlike the parent, the mutants synthesized nitrogenase and differentiated heterocysts in the presence of nitrate nitrogen. Uptake studies of nitrite and ammonia in mutants revealed that they possessed both nitrite reductase and glutamine synthetases (GS) at low levels, and the same level respectively in comparison with the parent.  相似文献   

20.
In Wolinella succinogenes ATP synthesis and consequently bacterial growth can be driven by the reduction of either nitrate (E0=+0.42 V), nitrite (E0=+0.36 V), fumarate (E0=+0.03 V) or sulphur (E0=-0.27 V) with formate as the electron donor. Bacteria growing in the presence of nitrate and fumarate were found to reduce both acceptors simultaneously, while the reduction of both nitrate and fumarate is blocked during growth with sulphur. These observations were paralleled by the presence and absence of the corresponding bacterial reductase activities. Using a specific antiserum, fumarate reductase was shown to be present in bacteria grown with fumarate and nitrate, and to be nearly absent from bacteria grown in the presence of sulphur. The contents of polysulphide reductase, too, corresponded to the enzyme activities found in the bacteria. This suggests that the activities of anaerobic respiration are regulated at the biosynthetic level in W. succinogenes. Thus nitrate and fumarate reduction are repressed by the most electronegative acceptor of anacrobic respiration, sulphur. By contrast, in Escherichia coli a similar effect is exerted by the most electropositive acceptor, O2. W. succinogenes also differs from E. coli in that fumarate reductase is not repressed by nitrate.Abbreviations BV benzyl viologen - DMN 2,3-dimethyl-1,4-naphthoquinone - DMSO dimethylsulfoxide - TMAO trimethylamine-N-oxide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号