首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 131-amino acid residue parvulin-like human peptidyl-prolyl cis/trans isomerase (PPIase) hPar14 was shown to exhibit sequence similarity to the regulator enzyme for cell cycle transitions human hPin1, but specificity for catalyzing pSer(Thr)-Pro cis/trans isomerizations was lacking. To determine the solution structure of hPar14 the (1)H, (13)C, and (15)N chemical shifts of this protein have been assigned using heteronuclear two and three-dimensional NMR experiments on unlabeled and uniformly (15)N/(13)C-labeled recombinant protein isolated from Escherichia coli cells that overexpress the protein. The chemical shift assignments were used to interpret the NOE data, which resulted in a total of 1042 NOE restraints. The NOE restraints were used along with 71 dihedral angle restraints and 38 hydrogen bonding restraints to produce 50 low-energy structures. The hPar14 folds into a betaalpha(3)betaalphabeta(2) structure, and contains an unstructured 35-amino acid basic tail N-terminal to the catalytic core that replaces the WW domain of hPin1 homologs. The three-dimensional structures of hPar14 and the PPIase domain of human hPin1 reveal a high degree of conservation. The root-mean-square deviations of the mean atomic coordinates of the heavy atoms of the backbone between residues 38 to 45, 50 to 58, 64 to 70, 81 to 86, 115 to 119 and 122 to 128 of hPar14 were 0.81(+/-0.07) A. The hPar14 model structure provides insight into how this class of PPIases may select preferential secondary catalytic sites, and also allows identification of a putative DNA-binding motif in parvulin-like PPIases.  相似文献   

2.
A functionally Pin1-like peptidyl-prolyl cis/trans isomerase (PPIase(1)) was isolated from proembryogenic masses (PEMs) of Digitalis lanata according to its enzymatic activity. Partial sequence analysis of the purified enzyme (DlPar13) revealed sequence homology to members of the parvulin family of PPIases. Similar to human Pin1 and yeast Ess1, it exhibits catalytic activity toward substrates containing (Thr(P)/Ser(P))-Pro peptide bonds and comparable inhibition kinetics with juglone. Unlike Pin1-type enzymes it lacks the phosphoserine or phosphothreonine binding WW domain. Western blotting with anti-DlPar13 serum recognized the endogenous form in nucleic and cytosolic fractions of the plant cells. Since the PIN1 homologue ESS1 is an essential gene, complementation experiments in yeast were performed. When overexpressed in Saccharomyces cerevisiae DlPar13 is almost as effective as hPin1 in rescuing the temperature-sensitive phenotype caused by a mutation in ESS1. In contrast, the human parvulin hPar14 is not able to rescue the lethal phenotype of this yeast strain at nonpermissive temperatures. These results suggest a function for DlPar13 rather similar to parvulins of the Pin1-type.  相似文献   

3.
Prolyl isomerases catalyze the cis/trans isomerization of peptide bonds preceding proline. Previously, we had determined the specificity toward the residue before the proline for cyclophilin-, FKBP-, and parvulin-type prolyl isomerases by using proline-containing oligopeptides and refolding proteins as model substrates. Here, we report the specificities of members of these three prolyl isomerase families for the residue following the proline, again in short peptide and in refolding protein chains. Human cyclophilin 18 and parvulin 10 from Escherichia coli show high activity, but low specificity, with respect to the residue following the proline. Human FKBP12 prefers hydrophobic residues at this position in the peptide assays and shows a very low activity in the protein folding assays. This activity was strongly improved, and the sequence specificity was virtually eliminated after the insertion of a chaperone domain into the prolyl isomerase domain of human FKBP12.  相似文献   

4.
A homologue of the human site-specific prolyl cis/trans isomerase PIN1 was identified in Arabidopsis thaliana. The PIN1At gene encodes a protein of 119 amino acids that is 53% identical with the catalytic domain of the human PIN1 parvulin. Steady-state PIN1At mRNA is found in all plant tissues tested. We show by two-dimensional NMR spectroscopy that the PIN1At is a prolyl cis/trans isomerase with specificity for phosphoserine-proline bonds. PIN1At is the first example of an eukaryotic parvulin without N- or C-terminal extensions. The N-terminal WW domain of 40 amino acids, typical of all the phosphorylation-dependent eukaryotic parvulins, is absent. However, triple-resonance NMR experiments showed that PIN1At contained a hydrophobic helix similar to the alpha1 helix observed in PIN1 that could mediate the protein-protein interactions.  相似文献   

5.
A second member of the parvulin family of peptidyl-prolyl cis/trans isomerases was identified in a human lung cDNA library. The gene encoded a protein named hPar14 that has 131 amino acid residues and a molecular mass of 13676 Da. Sequence comparison showed 34.5% identity to E. coli Par10 and 34% identity to human Pin1 (hPar18) within a C-terminal region of 87 or 120 amino acid residues, respectively. In comparison to the E. coli Par10, hPar14 possesses a N-terminal extension of 41 amino acid residues. This extension does not contain a polyproline II helix-binding motif typical of the known eukaryotic parvulins. The hPar14 does not accelerate the cis to trans interconversion of oligopeptides with side chain-phosphorylated Ser(Thr)-Pro moieties as hPin1 did. In contrast, it showed preference of an arginine residue adjacent N-terminal to proline. Northern blot analysis revealed expression of the gene within various human tissues like heart, placenta, liver, kidney and pancreas.  相似文献   

6.
PpiD is a periplasmic folding helper protein of Escherichia coli. It consists of an N‐terminal helix that anchors PpiD in the inner membrane near the SecYEG translocon, followed by three periplasmic domains. The second domain (residues 264–357) shows homology to parvulin‐like prolyl isomerases. This domain is a well folded, stable protein and follows a simple two‐state folding mechanism. In its solution structure, as determined by NMR spectroscopy, it resembles most closely the first parvulin domain of the SurA protein, which resides in the periplasm of E. coli as well. A previously reported prolyl isomerase activity of PpiD could not be reproduced when using improved protease‐free peptide assays or assays with refolding proteins as substrates. The parvulin domain of PpiD interacts, however, with a proline‐containing tetrapeptide, and the binding site, as identified by NMR resonance shift analysis, colocalized with the catalytic sites of other parvulins. In its structure, the parvulin domain of PpiD resembles most closely the inactive first parvulin domain of SurA, which is part of the chaperone unit of this protein and presumably involved in substrate recognition.  相似文献   

7.

Background  

The parvulin-type peptidyl prolyl cis/trans isomerase Par14 is highly conserved in all metazoans. The recently identified parvulin Par17 contains an additional N-terminal domain whose occurrence and function was the focus of the present study.  相似文献   

8.
9.
A series of 18 differently substituted new aryl hetaryl ketones and thioketones were synthesized in four to six steps from commercial starting materials. The new ketones were evaluated as inhibitors of the peptidyl‐prolyl cis‐trans isomerase hPin1 with Ki values ranging in the one‐digit micromolar to sub‐micromolar numbers. A crystal structure revealed the non‐planar arrangement of the aryl residues at the carbonyl compound and supports the hypothesis that the new compounds might mimic the transition state of the enzymatic conversion.  相似文献   

10.
11.
Human parvulin 14 (hPar14) is a folding helper enzyme belonging to the parvulin family of peptidyl-prolyl cis/trans isomerases (PPIases). This enzyme is thought to play a role in cell-cycle and chromatin remodeling. Although hPar14 was nuclearly localized and bound to double-stranded DNA, the molecular basis of the subcellular localization and the functional regulation remained unknown.Here we show that subcellular localization and DNA-binding ability of hPar14 is regulated by posttranslational modification of its N-terminal domain. As proved by MALDI-TOF mass spectrometry and MS/MS fragmentation, hPar14 is phosphorylated at Ser19 in vitro and in vivo. In human HeLa cells the protein is most likely modified by casein kinase 2 (CK2). Phosphorylation of hPar14 is inhibited both in vitro and in vivo by 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole (DRB), a specific inhibitor of CK2 activity. Mutation of Ser19 to Ala abolishes phosphorylation and alters the subcellular localization of hPar14 from predominantly nuclear to significantly cytoplasmic. Immunostaining shows that a Glu19 mutant of hPar14, which mimics the phosphorylated state of Ser19, is localized around the nuclear envelope, but does not penetrate into the nucleoplasm. In contrast to wild-type hPar14, the in vitro DNA-binding affinity of the Glu19 mutant is strongly reduced, suggesting that only the dephosphorylated protein is the active DNA-binding form of hPar14 in the nucleus.  相似文献   

12.
E. coli Par10 is a peptidyl-prolyl cis/trans isomerase (PPIase) from Escherichia coli catalyzing the isomerization of Xaa-Pro bonds in oligopeptides with a broad substrate specificity. The structure of E. coli Par10 has been determined by multidimensional solution-state NMR spectroscopy based on 1207 conformational constraints (1067 NOE-derived distances, 42 vicinal coupling-constant restraints, 30 hydrogen-bond restraints, and 68 phi/psi restraints derived from the Chemical Shift Index). Simulated-annealing calculations with the program ARIA and subsequent refinement with XPLOR yielded a set of 18 convergent structures with an average backbone RMSD from mean atomic coordinates of 0.50 A within the well-defined secondary structure elements. E. coli Par10 is the smallest known PPIase so far, with a high catalytic efficiency comparable to that of FKBPs and cyclophilins. The secondary structure of E. coli Par10 consists of four helical regions and a four-stranded antiparallel beta-sheet. The N terminus forms a beta-strand, followed by a large stretch comprising three alpha-helices. A loop region containing a short beta-strand separates these helices from a fourth alpha-helix. The C terminus consists of two more beta-strands completing the four-stranded anti-parallel beta-sheet with strand order 2143. Interestingly, the third beta-strand includes a Gly-Pro cis peptide bond. The curved beta-strand forms a hydrophobic binding pocket together with alpha-helix 4, which also contains a number of highly conserved residues. The three-dimensional structure of Par10 closely resembles that of the human proteins hPin1 and hPar14 and the plant protein Pin1At, belonging to the same family of highly homologous proteins.  相似文献   

13.
Wheat FKBP73 (wFKBP73) belongs to the FK506-binding protein (FKBP) family which, in common with the cyclophilin and parvulin families, possesses peptidyl prolylcis-trans isomerase (PPIase) activity. Wheat FKBP73 has been shown to contain three FKBP12-like domains, a tetratricopeptide repeat (TPR) via which it binds heat shock protein 90 and a calmodulin-binding domain (CaMbd). In this study we investigated: (1) the contribution of the N-terminal and C-terminal moieties of wFKBP73 to its biological activity by over-expression of the prolyl isomerase domains in transgenic rice, and (2) the biochemical characteristics of the C-terminal moiety. The recombinant wFKBP73 was found to bind calmodulin via the CaMbd and to be present mainly as a dimer in solution. The dimerization was abrogated when 138 amino acids from the C-terminal half were deleted. Expression of the full-length FKBP73 produced fertile rice plants, whereas the expression of the peptidyl prolyl cis-trans isomerase domains in transgenic rice resulted in male-sterile plants. The male sterility was expressed at various stages of anther development with arrest of normal pollen development occurring after separation of the microspores from the tetrads. Although the direct cause of the dominant male sterility is not yet defined, we suggest that it is associated with a novel interaction of the prolyl isomerase domains with anther specific target proteins.  相似文献   

14.
The link between internal enzyme motions and catalysis is poorly understood. Correlated motions in the microsecond-to-millisecond timescale may be critical for enzyme function. We have characterized the backbone dynamics of the peptidylprolyl isomerase (Pin1) catalytic domain in the free state and during catalysis. Pin1 is a prolyl isomerase of the parvulin family and specifically catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds. Pin1 has been shown to be essential for cell-cycle progression and to interact with the neuronal tau protein inhibiting its aggregation into fibrillar tangles as found in Alzheimer's disease. (15)N relaxation dispersion measurements performed on Pin1 during catalysis reveal conformational exchange processes in the microsecond timescale. A subset of active site residues undergo kinetically similar exchange processes even in the absence of a substrate, suggesting that this area is already "primed" for catalysis. Furthermore, structural data of the turning-over enzyme were obtained through inter- and intramolecular nuclear Overhauser enhancements. This analysis together with a characterization of the substrate concentration dependence of the conformational exchange allowed the distinguishing of regions of the enzyme active site that are affected primarily by substrate binding versus substrate isomerization. Together these data suggest a model for the reaction trajectory of Pin1 catalysis.  相似文献   

15.
The 119-amino acid residue prolyl cis/trans isomerase from Arabidopsis thaliana (PIN1At) is similar to the catalytic domain of the human hPIN1. However, PIN1At lacks the N-terminal WW domain that appears to be essential for the hPIN1 function. Here, the solution structure of PIN1At was determined by three-dimensional nuclear magnetic resonance spectroscopy. The PIN1At fold could be superimposed on that of the catalytic domain of hPIN1 and had a 19 residue flexible loop located between strand beta1 and helix alpha1. The dynamical features of this beta1/alpha1-loop, which are characteristic for a region involved in protein-protein interactions, led to exchange broadening in the NMR spectra. When sodium sulfate salt was added to the protein sample, the beta1/alpha1 loop was stabilized and, hence, a complete backbone resonance assignment was obtained. Previously, with a phospho-Cdc25 peptide as substrate, PIN1At had been shown to catalyze the phosphoserine/phosphothreonine prolyl cis/trans isomerization specifically. To map the catalytic site of PIN1At, the phospho-Cdc25 peptide or sodium sulfate salt was added in excess to the protein and chemical shift changes in the backbone amide protons were monitored in the (1)H(N)-(15)N heteronuclear single quantum coherence spectrum. The peptide caused perturbations in the loops between helix alpha4 and strand beta3, between strands beta3 and beta4, in the alpha3 helix, and in the beta1/alpha1 loop. The amide groups of the residues Arg21 and Arg22 showed large chemical shift perturbations upon phospho-Cdc25 peptide or sulfate addition. We conclude that this basic cluster formed by Arg21 and Arg22, both located in the beta1/alpha1 loop, is homologous to that found in the hPIN1 crystal structure (Arg68 and Arg69), which also is involved in sulfate ion binding. We showed that the sulfate group competed for the interaction between PIN1At and the phospho-Cdc25 peptide. In the absence of the WW domain, three hydrophobic residues (Ile33, Ile34, and Leu35) located in the long flexible loop and specific for the plant PIN-type peptidyl prolyl cis/trans isomerases (PPIases) could be an additional interaction site in PIN1At. However, phospho-peptide addition did not affect the resonances of these residues significantly. Electrostatic potential calculations revealed a negatively charged area not found in hPIN1 on the PIN1At molecular surface, which corresponds to the surface shielded by the WW domain in hPIN1. Based on our experimental results and the molecular specificities of the PIN1At enzyme, functional implications of the lack of WW domains in this plant PIN-type PPIase will be discussed.  相似文献   

16.
Suzuki Y  Win OY  Koga Y  Takano K  Kanaya S 《FEBS letters》2005,579(25):5781-5784
SIB1 FKBP22 is a homodimer, with each subunit consisting of the C-terminal catalytic domain and N-terminal dimerization domain. This protein exhibits peptidyl prolyl cis-trans isomerase activity for both peptide and protein substrates. However, truncation of the N-terminal domain greatly reduces the activity only for a protein substrate. Using surface plasmon resonance, we showed that SIB1 FKBP22 loses the binding ability to a folding intermediate of protein upon truncation of the N-terminal domain but does not lose it upon truncation of the C-terminal domain. We propose that the binding site of SIB1 FKBP22 to a protein substrate of PPIase is located at the N-terminal domain.  相似文献   

17.
The phosphorylation-specific peptidyl prolyl cis/trans isomerase (PPIase) Pin1 in humans and its homologues in yeast and animal species play an important role in cell cycle regulation. These PPIases consist of an NH(2)-terminal WW domain that binds to specific phosphoserine- or phosphothreonine-proline motifs present in a subset of phosphoproteins and a COOH-terminal PPIase domain that specifically isomerizes the phosphorylated serine/threonine-proline peptide bonds. Here, we describe the isolation of MdPin1, a Pin1 homologue from the plant species apple (Malus domestica) and show that it has the same phosphorylation-specific substrate specificity and can be inhibited by juglone in vitro, as is the case for Pin1. A search in the plant expressed sequence tag data bases reveals that the Pin1-type PPIases are present in various plants, and there are multiple genes in one organism, such as soybean (Glycine max) and tomato (Lycopersicon esculentum). Furthermore, all these plant Pin1-type PPIases, including AtPin1 in Arabidopsis thaliana, do not have a WW domain, but all contain a four-amino acid insertion next to the phospho-specific recognition site of the active site. Interestingly, like Pin1, both MdPin1 and AtPin1 are able to rescue the lethal mitotic phenotype of a temperature-sensitive mutation in the Pin1 homologue ESS1/PTF1 gene in Saccharomyces cerevisiae. However, deleting the extra four amino acid residues abolished the ability of AtPin1 to rescue the yeast mutation under non-overexpression conditions, indicating that these extra amino acids may be important for mediating the substrate interaction of plant enzymes. Finally, expression of MdPin1 is tightly associated with cell division both during apple fruit development in vivo and during cell cultures in vitro. These results have demonstrated that phosphorylation-specific PPIases are highly conserved functionally in yeast, animal, and plant species. Furthermore, the experiments suggest that although plant Pin1-type enzymes do not have a WW domain, they may fulfill the same functions as Pin1 and its homologues do in other organisms.  相似文献   

18.
FK506‐binding protein 22 (FKBP22) from the psychrotophic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) is a homodimeric protein with peptidyl prolyl cis‐trans isomerase (PPIase) activity. Each monomer consists of the N‐terminal domain responsible for dimerization and C‐terminal catalytic domain. To reveal interactions at the dimer interface of SIB1 FKBP22, the crystal structure of the N‐domain of SIB1 FKBP22 (SN‐FKBP22, residues 1‐68) was determined at 1.9 Å resolution. SN‐FKBP22 forms a dimer, in which each monomer consists of three helices (α1, α2, and α3N). In the dimer, two monomers have head‐to‐head interactions, in which residues 8–64 of one monomer form tight interface with the corresponding residues of the other. The interface is featured by the presence of a Val‐Leu knot, in which Val37 and Leu41 of one monomer interact with Val41 and Leu37 of the other, respectively. To examine whether SIB1 FKBP22 is dissociated into the monomers by disruption of this knot, the mutant protein V37R/L41R‐FKBP22, in which Val37 and Leu41 of SIB1 FKBP22 are simultaneously replaced by Arg, was constructed and biochemically characterized. This mutant protein was indistinguishable from the SIB1 FKBP22 derivative lacking the N‐domain in oligomeric state, far‐UV CD spectrum, thermal denaturation curve, PPIase activity, and binding ability to a folding intermediate of protein, suggesting that the N‐domain of V37R/L41R‐FKBP22 is disordered. We propose that a Val‐Leu knot at the dimer interface of SIB1 FKBP22 is important for dimerization and dimerization is required for folding of the N‐domain.  相似文献   

19.
An N-terminally truncated and cooperatively folded version (residues 6-39) of the human Pin1 WW domain (hPin1 WW hereafter) has served as an excellent model system for understanding triple-stranded beta-sheet folding energetics. Here we report that the negatively charged N-terminal sequence (Met1-Ala-Asp-Glu-Glu5) previously deleted, and which is not conserved in highly homologous WW domain family members from yeast or certain fungi, significantly increases the stability of hPin1 WW (approximately 4 kJ mol(-1) at 65 degrees C), in the context of the 1-39 sequence based on equilibrium measurements. N-terminal truncations and mutations in conjunction with a double mutant cycle analysis and a recently published high-resolution X-ray structure of the hPin1 cis/trans-isomerase suggest that the increase in stability is due to an energetically favorable ionic interaction between the negatively charged side chains in the N terminus of full-length hPin1 WW and the positively charged epsilon-ammonium group of residue Lys13 in beta-strand 1. Our data therefore suggest that the ionic interaction between Lys13 and the charged N terminus is the optimal solution for enhanced stability without compromising function, as ascertained by ligand binding studies. Kinetic laser temperature-jump relaxation studies reveal that this stabilizing interaction has not formed to a significant extent in the folding transition state at near physiological temperature, suggesting a differential contribution of the negatively charged N-terminal sequence to protein stability and folding rate. As neither the N-terminal sequence nor Lys13 are highly conserved among WW domains, our data further suggest that caution must be exercised when selecting domain boundaries for WW domains for structural, functional, or thermodynamic studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号