首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract Legionella pneumophila and some other Legionella species are capable of causing Legionnaire's disease, a potentially fatal pneumonia. The identification of legionellae by standard laboratory techniques such as culture is difficult and time-consuming. In the present work, the DNA sequence of the 23S-5S spacer region was determined for 43 Legionella isolates, and the sequence information was used to develop a species-specific detection system using PCR and reverse dot-blotting which employs just one PCR amplicon to perform genus- and species-specific detection. L. pneumophila serogroups 1–16 as well as 21 non- pneumophila isolates could be identified and differentiated at the species level using this system.  相似文献   

2.
We sequenced about 930 bp of the dnaJ gene from 15 Legionella pneumophila serogroups and some other members of the genus Legionella. As L. pneumophila 16S rDNA sequences could not discriminate between all subspecies and serogroups, we assessed the use of dnaJ gene sequences to differentiate between Legionella subspecies as well as between L. pneumophila serogroups. A phylogenetic analysis revealed that dnaJ gene sequences were more variable between the L. pneumophila serogroups than mip gene and 16S rDNA sequences. By studying 61 strains from 41 species of the genus Legionella, as well as other genera, we established a PCR method that could amplify 285 bp of dnaJ gene from all L. pneumophila serogroups. This primer set was more sensitive than mip gene primers and was able to detect 0.25 ng of purified DNA. We also describe the 16S rDNA primers that were used to detect most Legionella genus members.  相似文献   

3.
AIMS: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR). METHODS AND RESULTS: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb. CONCLUSIONS: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.  相似文献   

4.
The aim of this study was to develop an easy and accurate technique for the identification of the genus Geobacillus. For this purpose, Geobacillus genus-specific primers GEOBAC (GEOBAC-F and GEOBAC-R) based on the 16S-23S rRNA gene internal transcribed spacer (ITS) region sequences have been designed. In total, 52 sequences from three species of the genus Geobacillus (Geobacillus stearothermophilus, Geobacillus kaustophilus and Geobacillus lituanicus) were examined for the design of these primers. Analysis of the sequences revealed three highly conservative regions common to these species: 5' and 3' end regions of 16S-23S rRNA gene ITSs and box A. Some sequences possessed two additional conservative regions - genes of tRNA(Ile) and tRNA(Ala). These particular sequences were chosen for the construction of the primers. The designed primers targeted the gene of tRNA(Ile) and the 3' end region of ITSs. This technique was validated with both the reference strains of the genus Geobacillus and the thermophilic aerobic endospore-forming environmental isolates. Different Geobacillus species could be grouped according to the number and size of GEOBAC-PCR products and identified on the basis of the AluI and TaqI restriction analysis of these products.  相似文献   

5.
The structural variation in 16S-23S rDNA internal transcribed spacer regions (ITS) among Bacteroides species was assessed by PCR amplification and sequencing analysis, and its possible use for molecular diagnosis of these species was evaluated. Ninety strains of the genus Bacteroides, including the species B. distasonis, B. eggerthii, B. fragilis, B. ovatus, B. thetaiotaomicron, B. uniformis and B. vulgatus, produced one to three ITS amplification products with sizes ranging from 615 to 810 bp. Some Bacteroides strains could be differentiated at species level on the basis of ITS amplification patterns and restriction fragment length polymorphism (RFLP) analysis using a four-nucleotide-recognizing enzyme, Msp I. The results of sequence analysis of ITS amplification products revealed genes for Ile-tRNA and Ala-tRNA in all strains tested. The nucleotide sequence, except for that in tRNA-coding regions, was highly variable and characteristic for each species, but a common sequence among B. fragilis, B. thetaiotaomicron and B. ovatus was observed. A digoxigenin-labeled oligonucleotide probe (named FOT1), which was designed from this conserved sequence, specifically hybridized to the ITS amplification products from B. fragilis, B. thetaiotaomicron and B. ovatus. These results suggest that the ITS region is a useful target for the development of rapid and accurate techniques for identification of Bacteroides species.  相似文献   

6.
This study focuses on the interest of the hypervariable 23S-5S ribosomal intergenic spacer region (ISR) of the genus Legionella to analyze the phylogenic diversity of Legionella at the species and subspecies levels and to identify isolates directly from clinical specimens. The method, using a real-time PCR assay with a single primer pair followed by sequencing, was able to identify correctly 49 reference strains of Legionella belonging to 37 different species, including those implicated in human infections, and to clearly differentiate the three subspecies of L. pneumophila. Based on sequence similarities, the 23S-5S ISR sequences were much more variable than the rpoB and mip sequences (P<0.0001 by the Wilcoxon signed rank test). The 23S-5S ISR method was able to cluster Legionella species in accordance with phenotypic traits, such as autofluorescence or fatty acid membrane composition. Using maximum parsimony methods, the rpoB and 23S-5S ISR data sets were shown to be incongruent (P<0.001). In contrast, the 23S-5S ISR and the mip data sets were found to be congruent (P=0.313), suggesting the interest of combining these two regions to demonstrate phylogenetic links between Legionella species. This molecular assay was shown able to both detect Legionella DNA directly in respiratory specimens from patients exhibiting a Legionella infection and provide accurate identification of the bacterium at the species level in the tested specimens. These properties open a wide range of applications to the 23S-5S ISR sequencing method, from taxonomic analyses to clinical and epidemiological investigations.  相似文献   

7.
The intergenic transcribed spacers (ITS) between the 16S and 23S rRNA genetic loci are frequently used in PCR fingerprinting to discriminate bacterial strains at the species and intraspecies levels. We investigated the molecular nature of polymorphisms in ITS-PCR fingerprinting of low-G+C-content spore-forming bacteria belonging to the genera Bacillus, Brevibacillus, Geobacillus, and Paenibacillus: We found that besides the polymorphisms in the homoduplex fragments amplified by PCR, heteroduplex products formed during PCR between amplicons from different ribosomal operons, with or without tRNA genes in the ITS, contribute to the interstrain variability in ITS-PCR fingerprinting patterns obtained in polyacrylamide-based gel matrices. The heteroduplex nature of the discriminating bands was demonstrated by fragment separation in denaturing polyacrylamide gels, by capillary electrophoresis, and by cloning, sequencing, and recombination of purified short and tRNA gene-containing long ITS. We also found that heteroduplex product formation is enhanced by increasing the number of PCR cycles. Homoduplex-heteroduplex polymorphisms (HHP) in a conserved region, such as the 16S and 23S rRNA gene ITS, allowed discrimination of closely related strains and species undistinguishable by other methods, indicating that ITS-HHP analysis is an easy and reproducible additional tool for strain typing.  相似文献   

8.
A typing method based on analysis of restriction fragment length polymorphisms has previously been developed for Legionella pneumophila serogroup 1. Here data are presented demonstrating the utility of this method for typing strains of all other L. pneumophila serogroups described to date. The method, which is highly discriminatory, should be of considerable value in epidemiological investigations of legionella infections.  相似文献   

9.
In a previous study, we demonstrated that immunization of guinea pigs with the major secretory protein (MSP) of Legionella pneumophila, serogroup 1 induced humoral and cell-mediated immune responses to MSP and protective immunity against lethal aerosol challenge with this serogroup of L. pneumophila. Although serogroup 1 L. pneumophila cause most cases of Legionnaires' disease, other serogroups of L. pneumophila and species of Legionella cause many cases. In this study, we have examined if immunization with MSP induces humoral and cell-mediated immune responses and protective immunity across different serogroups of L. pneumophila and species of Legionella. By immunoblot analysis, MSP from L. pneumophila serogroup 1 (Lp1 MSP), L. pneumophila serogroup 6 (Lp6 MSP), and Legionella bozemanii (Lb MSP) shared common epitopes recognized by guinea pig anti-Lp1 MSP antiserum. These MSP molecules, however, were not identical as they had different apparent m.w. Immunization of guinea pigs with MSP induced strong cell-mediated immune responses across the different serogroups and species, as indicated by splenic lymphocyte proliferation and cutaneous delayed-type hypersensitivity in response to both homologous and heterologous MSP. Immunization with MSP induced strong protective immunity across two serogroups of L. pneumophila; overall, 9 survived aerosol challenge with L. pneumophila serogroup 1 compared to 0 of 12 (0%) sham-immunized control animals (p = 3 x 10(-4), Cochran-Mantel-Haenzel chi 2 statistic for pooled data). Immunization with MSP also induced protective immunity across species of Legionella but protection was species-specific. Whereas immunization with Lb MSP induced protective immunity against L. pneumophila, neither immunization with Lp1 MSP nor immunization with Lb MSP induced protective immunity against L. bozemanii, which produces MSP. Not surprisingly, immunization with MSP did not induce protective immunity against MSP-negative Legionella micdadei. In the case of both L. bozemanii and L. micdadei, immunization with a sublethal dose did confer protective immunity to aerosol challenge indicating that these species do contain immunoprotective components. This study demonstrates that immunization with MSP induces humoral and cell-mediated immune responses across different serogroups of L. pneumophila and species of Legionella, but that the capacity of MSP immunization to induce protective immunity is species-specific. Nevertheless, an MSP vaccine has the potential to induce protective immunity against the great majority of cases of Legionnaires' disease.  相似文献   

10.
Streptococcus canis isolates, also including S. canis of artificially contaminated milk, could be identified by polymerase chain reaction (PCR) amplification using oligonucleotide primers designed according to species-specific parts of the 16S rRNA gene and, after sequencing, according to S. canis-specific parts of the 16S-23S rDNA intergenic spacer region and with oligonucleotide primers detecting an internal fragment of the group G streptococcal CAMP factor gene cfg. The 16S rRNA gene- and CAMP factor gene cfg-specific oligonucleotide primers could be used together in a multiplex PCR. No cross-reactivities could be observed with other group G streptococcal isolates or with any of the other control strains of various streptococcal species and serogroups. The PCR methods presented in this study allowed a rapid and reliable identification of S. canis and might help to improve the diagnosis of this bacterial species in animal and human infections.  相似文献   

11.
Piscirickettsia salmonis is the etiological agent of Salmonid Rickettsial Septicemia, a disease affecting salmon aquaculture industry. We analyzed the 16S-23S rDNA spacer region (internal transcribed spacer, ITS) of Chilean P. salmonis isolates LF-89 and EM-90. Two main ITS amplification products were obtained by PCR using L1 and G1 primers, differing from that described where only one ITS region was found. By Southern blot, it was established that these two amplification products contained sequences related to P. salmonis ITS. Sequence analysis confirmed that P. salmonis had two ITS regions: ITS A and ITS B. In both isolates, the smaller (ITS B) corresponded to ITS sequences previously described for each one, and the larger (ITS A) were almost the same as their respective ITS B sequences interrupted by an insert which contained two tRNAs genes: tRNA-Ile and tRNA-Ala.  相似文献   

12.
Ko KS  Hong SK  Lee HK  Park MY  Kook YH 《Journal of bacteriology》2003,185(21):6269-6277
The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences of dotA, which suggests that multiple hits, resulting in synonymous substitutions, have occurred. Gene phylogenies inferred from three different segments (the 5'-end region, the central, large periplasmic domain, and the 3'-end region) showed impressively dissimilar topologies. This was concordant with the sequence polymorphisms, indicating that each region has experienced an independent evolutionary history, and was evident even within the same domain of each strain. For example, the PP2 domain was found to have a heterogeneous structure, which led us hypothesize that the dotA gene of L. pneumophila may have originated from two or more different sources. Comparisons of synonymous and nonsynonymous substitutions demonstrated that the PP2 domain has been under strong selective pressure with respect to amino acid change. Split decomposition analysis also supported the intragenic recombination of dotA. Multiple recombinational exchange within the dotA gene, encoding an integral cytoplasmic membrane protein that is secreted, probably provided increased fitness in certain environmental niches, such as within a particular biofilm community or species of amoebae.  相似文献   

13.
To determine the variability of the 16S-23S rRNA intergenic spacer region (ISR) of the newly described Acinetobacter baylyi, 88 clones containing ISR amplicons were screened and 14 chosen for further analysis. Two different sized 16S-23S rRNA ISRs were distinguished comprising five variable and four conserved nucleotide blocks. The major regions of heterogeneity between the different sized ISRs were due to blocks of substitutions with unique secondary structures interspersed with nucleotide substitutions, rather than differences caused by presence or absence of tRNA genes, which is often the case. Recombination events causing shuffling of nucleotide blocks are considered the most likely explanation for the mosaic structure observed between the different copies of the ISR. Single base differences present in the long ISR (LISR) were then exploited in attempts to detect possible heterogeneity between rrn copies in Acinetobacter baylyi but variability was not detected by RFLP analysis of LISR-specific PCR products. These primers were shown to be highly specific for 3 Acinetobacter baylyi strains based on LISR sequence homogeneity.  相似文献   

14.
AIMS: To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. METHODS AND RESULTS: The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. CONCLUSIONS: There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.  相似文献   

15.
The method for DNA fingerprinting of the 16S-23S rDNA intergenic spacer region was modified to increase resolution of bacterial strains by thermal gradient gel electrophoresis (TGGE) analysis. By utilizing the high melting temperature region of the tRNA gene located in the middle of the 16S-23S rDNA intergenic spacer region as an internal clamp for TGGE, multiple melting domain problems were solved. PCR primers lacking a stretch of GC-rich sequences (GC-clamp) amplified the intergenic spacer region more efficiently than GC-clamped primers. Therefore, PCR artifacts were avoided by using low, 17-cycle, PCR. The method was successfully applied to diverse bacterial species for strain differentiation by TGGE without requiring a special PCR primer set.  相似文献   

16.
The detection of heterogeneity of the 16S-23S ribosomal intergenic transcribed spacer (ITS) region has become rather common over the past years for identification and typing purposes of bacteria. The ITS not only varies in sequence and length, but also in number of alleles per genome and in their position on the chromosome together with the ribosomal clusters. The ITS characterisation has allowed discrimination of several species within a genus and variation in ITS sequences between the multiple rrn operons present within a genome may be as high or greater than between strains of the same species or subspecies. It is important to understand the variability of ITS sequences in a given genome to gain insights into bacterial physiology and taxonomy. The present study describes the possibility to type Streptococcus pneumoniae by PCR-ribotyping of the spacer region, the determination of the molecular structure of the ITS, and the determination of the number and localisation of rrn operons in this microorganism. Our results show that the genome of S. pneumoniae contains four ribosomal operons, showing the same genomic organisation among strains, each containing a single ITS allele of 270 bp. The ITS sequence presents a mosaic organisation of blocks highly conserved intra- and inter-species within the genus Streptococcus, giving no possibility for variations to arise.  相似文献   

17.
Conventional identification of mycobacteria is based on the analysis of their phenotypic and biochemical characteristics after culture; thus this method is time-consuming, laborious, and is not always conclusive. Developing a fast and accurate method for rapid identification of Mycobacterium species is in urgent need for early diagnosis of mycobacteriosis and effective patient management. In this study, an efficient and affordable novel multiplex probe array which allows simultaneous identification of 15 medically important mycobacterial species was developed. A pair of genus-specific primers and a set of genus- and species-specific probes were designed according to the conserved and polymorphic regions of the 16S rRNA gene, internal transcribed spacer (ITS) sequence, and 23S rRNA gene of mycobacteria. This probe array was applied for the identification of 78 clinical mycobacterial isolates recovered from Henan, China. The results showed that the specificity and sensitivity of the probe array were 100% for both genus-specific probe and Mycobacterium tuberculosis complex-specific probe. Among 52 isolates of nontuberculous mycobacteria, 43 isolates (82.7%) can be rapidly identified to the species level. Genetic variability of 16S-23S rRNA gene ITS region in M. avium, M. intracellulare, M. chelonae, M. abscessus and M. fortuitum were analyzed. With the accumulation of the sequences of ITS identified and further optimization of probes, the multiplex probe array has the potential to be developed into a practical tool for rapid and accurate identification of mycobacterial species in clinical laboratory.  相似文献   

18.
Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions.  相似文献   

19.
The usefulness of 16S-23S (ITS1) and 23S-5S (ITS2) ribosomal spacer nucleotide sequence determination, as a complementary approach to the biochemical tests traditionally used for enterococcal species identification, is shown by its application to the identification of a strain, E27, isolated from a natural bacteria mixture used for cheese production. Using combined approaches we showed, unambiguously, that strain E27 belongs to the Enterococcus faecium species. However, its ITS1 region has an interesting peculiarity. In our previous study of ITS1s from various enterococcal species (NAIMI et al., 1997, Microbiology 143, 823-834), the ITS1s of the two E. faecium strains studied, were found to contain an additional 115-nt long stem-loop structure as compared to the ITS1s of other enterococci, only one out of the 3 ITS1s of E. hirae ATCC 9790, was found to contain a similar 107-nt long stem-loop structure. The ITS1 of strain E27 is 100% identical to that of E. faecium ATCC 19434T, except that the 115-nt additional fragment is absent. This strongly suggests the existence of lateral DNA transfer or DNA recombination events at a hot spot position of the ITS1s from E. faecium and E. hirae. Small and large ITS1 nucleotide sequence determination for strain E27 generalized the notion of two kinds of ITSs in enterococci: one with a tRNA(Ala) gene, one without tRNA gene. To complete strain E27 characterization, its 23S rRNA sequence was established. This is the first complete 23S rRNA nucleotide sequence determined for an enterococcal species.  相似文献   

20.
Molecular and biochemical assays were used to determine the identification of thermophilic bacilli isolated from New Zealand milk powder. One hundred and forty one isolates of thermophilic bacilli were classified into six species using biochemical profiles. Geobacillus stearothermophilus represented 56% of the isolates. All isolates were also analysed by randomly amplified polymorphic DNA (RAPD) analysis, with 45 types identified. Amplification of the 16S-23S rDNA internal spacer region produced two to eight amplification products per strain. The patterns from gel electrophoresis of the internal spacer region amplicons formed two major groupings suggesting the possibility of two distinct species. Partial sequences of 16S rDNA from representatives from each group were compared with sequences in GeneBank and were found to match the 16S rDNA sequences of B. flavothermus and G. thermoleovorans. Primers were designed for these species and used to screen an arbitrary selection of 59 of the dairy isolates. This enabled the identification of 28 isolates as B. flavothermus and 31 isolates as Geobacillus species and these appear to be the predominant isolates in the New Zealand milk powder samples examined. Comparison of the fragment pattern generated by amplification of the 16S-23S rDNA internal spacer region is a simple method to differentiate thermophilic Bacillus species associated with the dairy industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号