首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In agreement with previous reports, chick intestinal calcium-binding protein does not appear in the chick embryo until 1 day after hatching while intestinal alkaline phosphatase begins to appear at 19–20 days of embryonic life. The ability of chick embryo to metabolize vitamin D3 to 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3, and 24,25-dihydroxyvitamin D3 is present at least by day 18 of embryonic life as demonstrated by in vivo and in vitro techniques. It also illustrates that metabolism of vitamin D3 was not the limiting factor in the appearance of calcium-binding protein and alkaline phosphatase in intestine. Instead, the uptake of 1,25-dihydroxyvitamin D3 by the duodenum was very low prior to hatching, even though significant amounts were present in the yolk sac. Injection of a physiological dose of 1,25-dihydroxyvitamin D3 to chick embryo at 9 days failed to stimulate appearance of calcium binding protein by 18 days of embryonic life. Thus, it appears that either the normal mechanism for transport of 1,25-dihydroxyvitamin D3 to intestine or its receptors in intestine may not be present prior to day 18–19.A large fraction of radioactive vitamin D3 injected into the yolk sac was found esterified especially in the embryonic liver. The significance of this is not yet understood.Injection of 1,25-dihydroxyvitamin D3 at 325 pmoles/per egg at 9 days resulted in 70% mortality of embryos while a 32-pmole dose resulted in no significant increase in mortality. The basis for this toxicity is not yet understood.  相似文献   

2.
Human pancreatic growth hormone releasing factor (1-29)-amide [hpGRF (1-29)-NH2] and the following analogs: [D-Tyr-1]-hpGRF(1-29)-NH2, [D-Ala-2]-hpGRF(1-29)-NH2, [D-Asp-3]-hpGRF(1-29)-NH2, and [N-Ac-Tyr-1]-hpGRF (1-29)-NH2 were synthesized using solid phase methodology and tested for their ability to stimulate growth hormone (GH) secretion in the rat and the pig in vivo. [D-Ala-2]-hpGRF (1-29)-NH2 was approximately 50 times more potent than the parent molecule in eliciting GH secretion in the rat. The other analogs were less active, but all were more potent than the 1-29 amide in the rat. [D-Tyr-1]-hpGRF(1-29)-NH2 was 10 times more potent, [D-Asp-3]-hpGRF(1-29)-NH2 7 times more potent, and the acetylated molecule approximately 12 times more potent than hpGRF(1-29)-NH2.  相似文献   

3.
1. Chick intestinal nuclei were isolated, with practically no contamination from other organelles and whole cells, by centrifugation through 2.4m-sucrose. 2. The proportions of RNA, DNA and protein of the isolated nuclei were unaffected by the vitamin D status of the birds. The RNA/DNA ratio was 0.15. 3. The incorporation of [5-(3)H]orotic acid into the rapidly labelled intestinal nuclear RNA, after a 10min. pulse of the orotic acid, was increased in vitamin D-deficient chicks only 10min. after a 125mug. dose of cholecalciferol. 4. There was no stimulation of the DNA-dependent RNA polymerase activity of the isolated nuclei from birds treated with cholecalciferol. 5. The results are discussed in relation to the changes occurring during the lag period, after administration of cholecalciferol and before Ca(2+) transport is detected, and the function of the vitamin.  相似文献   

4.
Characterization of the metabolites of vitamin D 3 in the chick   总被引:5,自引:0,他引:5  
M R Haussler 《Steroids》1972,20(5):639-650
  相似文献   

5.
The mechanism of DDT impaired calcium absorption was studied in control, DDT fed and starved chicks. The metabolism of [3H]cholecalciferol was the same in the 3 groups, but the DDT fed and starved chicks had less intestinal calcium binding activity than the control chicks. These results suggest that DDT impaired calcium absorption and intestinal calcium binding activity may be a result of DDT induced anorexia.  相似文献   

6.
《Bone and mineral》1989,5(2):117-128
It is not known if the effects of vitamin D deficiency on chick bone are due to direct actions of the vitamin or if they are secondary to other changes, such as hypocalcemia. Day-old cockerels were fed either a rachitogenic diet containing no Ca (−D-Ca), 1.4% Ca (−D), or 3% Ca (−DHiCa) and given corn oil (−D groups) or vitamin D3 in corn oil (+D and + D-Ca) p.o. for up to 21 days. Radii were harvested and incubated for 6–8 h in a defined medium. Medium samples were taken every 2 h and analysed for Ca, P1 and lactate. Some bones were incubated in a respirometer to measure O2 consumption. Compared to +D, −D birds showed evidence of D deficiency by decreased plasma Ca concentration (33%), bone and body weight (43%) and Ca release from bone (70%) and by histological changes in bone characteristic of rickets. Increases were seen in total and bone alkaline phosphatase activity in plasma (270 and 706%, respectively), Pi release (23%), O2 consumption (23%) and lactate production (52%) by the −D radii. The marked hypocalcemia seen in the −D chicks did not occur in −DHiCa birds. Nevertheless, bone and body weights were decreased in this group and bone lactate production, O2 consumption and total and bone alkaline phosphatase in plasma were increased. Rachitic bone lesions were only partially corrected by the high-Ca diet. Release of Ca and Pi from the −DHiCa bone? was not different than from +D radii. Comparing +D-Ca and −D-Ca groups with +D chicks, both were hypocalcemic with decreased bone weight, body weight and bone Ca release, while showing elevated lactate production and Pi release. The only difference between the +D-Ca and −D-Ca groups was a 50% decrease in Ca release by −D-Ca bone. The results suggest that in chicks: (1) some, but not all, of the effects of vitamin D deficiency on bone can be corrected by normalizing plasma Ca and (2) evaluation of the effects of vitamin D deficiency on bone may require hypocalcemia, since some responses are masked by normocalcemia.  相似文献   

7.
8.
We investigated the occurrence of rickets in adolescent tamarins (Saguinus imperator) residing at the Los Angeles Zoo. Compared to tamarins in the same colony without clinical evidence of bone disease (N = 6), rachitic platyrrhines (N = 3) had a decrease in their serum calcium concentration (P < .05). The affected tamarins also had lower serum 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) levels than did nonaffected colony mates, but 2–10-fold higher concentrations than in Old World primates of a comparable developmental stage. New World primates in many different genera are known to exhibit target organ resistance to the active vitamin D3 metabolite, 1,25-(OH)2D3, compensated by maintenance of high circulating concentrations of 1,25-(OH)2D3. The relatively low serum 1,25-(OH)2D3 concentration in rachitic tamarins and ultraviolet B radiation deficient environment of these primates suggested that bone disease may be linked to a deficiency in substrate for 1,25-(OH)2D3, 25 hydroxyvtamin D3 (25-OHD3). Chronic exposure of platyrrhines in three different vitamin D resistant genera to an artificial UVB source resulted in 1) a significant increase in the mean serum 25-OHD3 (P < .001) and 1,25-(OH)2D3 (P < .02) level over that encountered in platyrrhines not exposed to UVB; and 2) prevention of rachitic bone disease in irradiated individuals. These data further show that the serum 25-OHD3 and 1,25-OH2D3 levels are positively correlated in vitamin D-resistant platyrrhines (r = 0.64; P= .0014) and suggest that a compromise in cutaneous vitamin D3 production by means of UVB deprivation may limit necessary 1,25-(OH)2D3 production. © 1992 Wiley-Liss, Inc.  相似文献   

9.
The 25-hydroxylation of vitamin D2 and vitamin D3 was studied in the mitochondrial fraction from rat liver and in a reconstituted system containing cytochrome P-450 from rat liver microsomes. The mitochondrial fraction catalyzed the 25-hydroxylation of vitamin D3 at least two times more effectively than the 25-hydroxylation of vitamin D2. Microsomal cytochrome P-450 catalyzed an efficient 25-hydroxylation of vitamin D3, but no 25-hydroxylation of vitamin D2 could be detected. The present results show a difference in the 25-hydroxylation of vitamin D2 and vitamin D3 in rat liver in vitro.  相似文献   

10.
11.
It was found that calcium exchange disturbances under vitamin E deficiency is due to changes in the metabolism of vitamin D. In vitamin E-deficient rats the serum blood levels of hydroxyvitamin D (25-OHD) showed no significant changes, whereas the concentration of the hormonal form of 1.25-hydroxyvitamin D [1.25(OH)2D], decreased by 40%. In vitro studies showed that the 25-hydroxylase D3 activity in the livers of rats with E-avitaminosis had a tendency to decrease (by 22%), whereas that of 24-hydroxylase dropped drastically (by 52%). The serum blood levels of the parathyroid hormone (PTH) and kidney levels of cAMP under E-avitaminosis were significantly lowered. Preincubation of kidney slices with the adenylate cyclase activator, forskolin, increased the activity of 1-OHase in about the same degree as that in vitamin E-rich rats. The free radical scavenger, BHT, added to kidney slices suppressed the activity of the both enzymes; this finding testifies to the low O2-binding affinity of these monooxygenases. The content of 1.25(OH)2D3 receptors occupied in vivo in the kidneys of vitamin E-deficient rats decreased 2.5-fold; however, the binding of 1.25(OH)2D3-receptor complexes to heterologous DNA was unaffected thereby. The vitamin deficiency in vivo results in the inhibition of vitamin D metabolism in the liver and kidney concomitant with the formation of active metabolites and decreases the concentration of hormone-receptor complexes in target tissues.  相似文献   

12.
13.
Two separate liver cytosolic proteins have been partially purified and identified by their selectivity for binding either [1α,2α(n)-3H]vitamin D3 or 25-hydroxy [26(27)-methyl-3H]vitamin D3. The chromatographic properties of the two proteins were not distinguishable by ion-exchange nor were they dependent upon the vitamin D3 nutritional status of the birds. However, in molecular exclusion chromatography, the binding proteins can be successfully resolved into two discrete entities. Their binding properties suggest that they are not identical with plasma vitamin D3 binding protein.  相似文献   

14.
The photobiogenesis and metabolism of vitamin D.   总被引:5,自引:0,他引:5  
Provitamin D3 (7-dehydrocholesterol) is converted to previtamin D3 by the action of ultraviolet radiation on the skin. Previtamin D3 thermally isomerizes to vitamin D3 in the skin and the vitamin is then transported to the liver on the vitamin D-binding protein. Although there are extrahepatic vitamin D-25-hydroxylases, the liver is the major site for the 25-hydroxylation of vitamin D. In response to hypocalcemia and hypophosphatemia, 25-OH-D is metabolized by a renal-cytochrome. P450-dependent mixed function oxidase system is 1alpha,25(OH)2D. When calcium and phosphate homeostasis prevails the renal 25-OH-D-1alpha-hydroxylase activity is limited and instead a non-cytochrome P450 mixed function oxidase metabolizes 25-OH-D to 24R,25(OH)2D. Parathyroid hormone has clearly been shown to be a trophin for the renal synthesis of 1,25(OH)2D; however, the role and significance of the adrenal steroids, or gonadal and pituitary hormones, on the renal 25-OH-D-1alpha-hydroxylase is not well defined. The regulation of the photometabolism of provitamin D3 to vitamin D3, the role and significance of the side-chain metabolism of 1,25(OH)2D by the small intestine, and the metabolism of 25-OH-D to 24R,25(OH)2D by chondrocytes and its stimulation of protein synthesis in these cells are just a few issues that will require further investigation.  相似文献   

15.
R P Link  H F DeLuca 《Steroids》1988,51(5-6):583-598
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)).  相似文献   

16.
17.
Chick intestinal brush border proteins were examined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulfate. Following injection of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3, a large molecular weight protein present in the vitamin D-deficient brush borders diminishes and a larger protein appears. This change occurs before calcium binding protein can be detected by Chelex assay and prior to the increase in total alkaline phosphatase but correlates closely with increased intestinal calcium absorption in response to the metabolites. The two brush border proteins have been solubilized with n-butanol and partially characterized. The vitamin D-deficient protein has a molecular weight of about 200,000 and has alkaline phosphatase activity but no detectable calcium binding activity. The protein which appears in response to metabolites has a molecular weight of 230,000, binds calcium, and also has alkaline phosphatase activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号