首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Length Mutations in Human Mitochondrial DNA   总被引:42,自引:8,他引:42  
R. L. Cann  A. C. Wilson 《Genetics》1983,104(4):699-711
By high-resolution, restriction mapping of mitochondrial DNAs purified from 112 human individuals, we have identified 14 length variants caused by small additions and deletions (from about 6 to 14 base pairs in length). Three of the 14 length differences are due to mutations at two locations within the D loop, whereas the remaining 11 occur at seven sites that are probably within other noncoding sequences and at junctions between coding sequences. In five of the nine regions of length polymorphism, there is a sequence of five cytosines in a row, this sequence being comparatively rare in coding DNA. Phylogenetic analysis indicates that, in most of the polymorphic regions, a given length mutation has arisen several times independently in different human lineages. The average rate at which length mutations have been arising and surviving in the human species is estimated to be many times higher for noncoding mtDNA than for noncoding nuclear DNA. The mystery of why vertebrate mtDNA is more prone than nuclear DNA to evolve by point mutation is now compounded by the discovery of a similar bias toward rapid evolution by length mutation.  相似文献   

2.
The genetic variability and population structure of worldwide populations of the sperm whale was investigated by sequence analysis of the first 5''L 330 base pairs in the mitochondrial DNA (mtDNA) control region. The study included a total of 231 individuals from three major oceanic regions, the North Atlantic, the North Pacific and the Southern Hemisphere. Fifteen segregating nucleotide sites defined 16 mtDNA haplotypes (lineages). The most common mtDNA types were present in more than one oceanic region, whereas ocean-specific types were rare. Analyses of heterogeneity of mtDNA type frequencies between oceans indicated moderate (GST = 0.03) but statistically significant (p = 0.0007) genetic differentiation on a global scale. In addition, strong genetic differentiation was found between potential social groups (GST = 0.03-0.6), indicating matrilineal relatedness within groups. The global nucleotide diversity was quite low (pi = 0.004) implying a recent common mtDNA ancestry (< 100,000) years ago) and a young global population structure. However, within this time period, female dispersal has apparently been limited enough to allow the development of global mtDNA differentiation. The results are consistent with those from observational studies and whaling data indicating stable social affiliations, some degree of area fidelity and latitudinal range limitations in groups of females and juveniles.  相似文献   

3.
We analyzed the control region of the mitochondrial DNA (mtDNA)from maternally related individuals originating from the AzoresIslands (Portugal) in order to estimate the mutation rate ofmtDNA and to gain insights into the process by which a new mutationarises and segregates into heteroplasmy. Length and/or pointheteroplasmies were found at least in one individual of 72%of the studied families. Eleven new point substitutions werefound, all of them in heteroplasmy, from which five appear tobe somatic mutations and six can be considered germinal, evidencingthe high frequency of somatic mutations in mtDNA in healthyyoung individuals. Different values of the mutation rate accordingto different assumptions were estimated. When considering allthe germinal mutations, the value of the mutation rate obtainedis one of the highest reported so far in family studies. However,when corrected for gender (assuming that the mutations presentin men have the same evolutionary weight of somatic mutationsbecause they will inevitably be lost) and for the probabilityof intraindividual fixation, the value for the mutation rateobtained for HVRI and HVRII (0.2415 mutations/site/Myr) wasin the upper end of the values provided by phylogenetic estimations.These results indicate that the discrepancy, that has been reportedpreviously, between the human mtDNA mutation rates observedalong evolutionary timescales and the estimations obtained usingfamily pedigrees can be minimized when corrections for genderproportions in newborn individuals and for the probability ofintraindividual fixation are introduced. The analyses performedsupport the hypothesis that (1) in a constant, tight bottleneckgenetic drift alone can explain different patterns of heteroplasmysegregation and (2) in neutral conditions, the destiny of anew mutation is strictly related to the initial proportion ofthe new variant. Another important point arising from the dataobtained is that, even in the absence of a paternal contributionof mtDNA, recombination may occur between mtDNA molecules presentin an individual, which is only observable if it occurs betweenmtDNA types that differ at two or more positions.  相似文献   

4.
Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To test this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL.  相似文献   

5.
We have studied the pathogenic role of 10044A-->G, a heteroplasmic mitochondrial DNA (mtDNA) mutation that has been suggested to be pathogenic in one family with severe pediatric morbidity. We found the mutation at an average frequency of 1.9% among 259 individuals including healthy controls. The mutation appeared to be heteroplasmic by restriction fragment analysis but analysis of subcloned polymerase chain reaction fragments confirmed homoplasmy. The polymorphic nature of 10044A-->G was verified by demonstrating exclusive association with a rare mtDNA haplotype within haplogroup H. We suggest that the evaluation of putatively pathogenic mutations in mtDNA should include the analysis of a sufficient number of haplotype-matched control samples and that the heteroplasmy should be verified by cloning.  相似文献   

6.
Multiple Origins of a Mitochondrial Mutation Conferring Deafness   总被引:2,自引:0,他引:2       下载免费PDF全文
A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation.  相似文献   

7.
Mitochondrial diseases are a group of rare heterogeneous genetic disorders caused by total or partial mitochondrial dysfunction. They can be caused by mutations in nuclear or mitochondrial DNA (mtDNA). MERRF (Myoclonic Epilepsy with Ragged-Red Fibers) syndrome is one of the most common mitochondrial disorders caused by point mutations in mtDNA. It is mainly caused by the m.8344A > G mutation in the tRNALys (UUR) gene of mtDNA (MT-TK gene). This mutation affects the translation of mtDNA encoded proteins; therefore, the assembly of the electron transport chain (ETC) complexes is disrupted, leading to a reduced mitochondrial respiratory function.However, the molecular pathogenesis of MERRF syndrome remains poorly understood due to the lack of appropriate cell models, particularly in those cell types most affected in the disease such as neurons. Patient-specific induced neurons (iNs) are originated from dermal fibroblasts derived from different individuals carrying the particular mutation causing the disease. Therefore, patient-specific iNs can be used as an excellent cell model to elucidate the mechanisms underlying MERRF syndrome. Here we present for the first time the generation of iNs from MERRF dermal fibroblasts by direct reprograming, as well as a series of pathophysiological characterizations which can be used for testing the impact of a specific mtDNA mutation on neurons and screening for drugs that can correct the phenotype.  相似文献   

8.
Genealogical histories show that the inhabitants of Tristan da Cunha are derived from a known number of founders. Using the transmission of mitochondrial DNA (mtDNA) from mother to offspring pairs, we traced the mtDNA types found in 161 extant individuals to five female founders. Although the historical data claimed that two pairs of sisters were among the founding females, mtDNA data showed support for only one pair of sisters. We also studied the fidelity of mtDNA transmission in conjunction with the genealogical data. We did not detect any mutations from 698 base pairs of sequence data from 75 individuals, which together accounted for 108 independent transmissions of mtDNA from mother to offspring. Based on this observation, we estimate that the mtDNA mutation rate is no more than one new mutation every 36 transmissions. These results indicate a high fidelity of maternal mtDNA transmission and support the utility of mtDNA in evolutionary and forensic studies. Am J Phys Anthropol 104:157–166, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Mitochondrial DNA (mtDNA) is believed to be highly vulnerable to age-associated damage and mutagenesis by reactive oxygen species (ROS). However, somatic mtDNA mutations have historically been difficult to study because of technical limitations in accurately quantifying rare mtDNA mutations. We have applied the highly sensitive Duplex Sequencing methodology, which can detect a single mutation among >107 wild type molecules, to sequence mtDNA purified from human brain tissue from both young and old individuals with unprecedented accuracy. We find that the frequency of point mutations increases ∼5-fold over the course of 80 years of life. Overall, the mutation spectra of both groups are comprised predominantly of transition mutations, consistent with misincorporation by DNA polymerase γ or deamination of cytidine and adenosine as the primary mutagenic events in mtDNA. Surprisingly, G→T mutations, considered the hallmark of oxidative damage to DNA, do not significantly increase with age. We observe a non-uniform, age-independent distribution of mutations in mtDNA, with the D-loop exhibiting a significantly higher mutation frequency than the rest of the genome. The coding regions, but not the D-loop, exhibit a pronounced asymmetric accumulation of mutations between the two strands, with G→A and T→C mutations occurring more often on the light strand than the heavy strand. The patterns and biases we observe in our data closely mirror the mutational spectrum which has been reported in studies of human populations and closely related species. Overall our results argue against oxidative damage being a major driver of aging and suggest that replication errors by DNA polymerase γ and/or spontaneous base hydrolysis are responsible for the bulk of accumulating point mutations in mtDNA.  相似文献   

10.
Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, because many independent reads are generated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation rate at heteroplasmic mutations is significantly higher than that estimated for all mutable sites in the human mtDNA genome. Moreover, there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can provide novel insights into genome-wide aspects of mtDNA heteroplasmy.  相似文献   

11.
We have extended our previous analysis of the pedigree rate of control-region divergence in the human mitochondrial genome. One new germline mutation in the mitochondrial DNA (mtDNA) control region was detected among 185 transmission events (generations) from five Leber hereditary optic neuropathy (LHON) pedigrees. Pooling the LHON pedigree analyses yields a control-region divergence rate of 1.0 mutation/bp/10(6) years (Myr). When the results from eight published studies that used a similar approach were pooled with the LHON pedigree studies, totaling >2,600 transmission events, a pedigree divergence rate of 0.95 mutations/bp/Myr for the control region was obtained with a 99.5% confidence interval of 0.53-1.57. Taken together, the cumulative results support the original conclusion that the pedigree divergence rate for the control region is approximately 10-fold higher than that obtained with phylogenetic analyses. There is no evidence that any one factor explains this discrepancy, and the possible roles of mutational hotspots (rate heterogeneity), selection, and random genetic drift and the limitations of phylogenetic approaches to deal with high levels of homoplasy are discussed. In addition, we have extended our pedigree analysis of divergence in the mtDNA coding region. Finally, divergence of complete mtDNA sequences was analyzed in two tissues, white blood cells and skeletal muscle, from each of 17 individuals. In three of these individuals, there were four instances in which an mtDNA mutation was found in one tissue but not in the other. These results are discussed in terms of the occurrence of somatic mtDNA mutations.  相似文献   

12.
The analysis of mitochondrial DNA (mtDNA) sequences has been a potent tool in our understanding of human evolution. However, almost all studies of human evolution based on mtDNA sequencing have focused on the control region, which constitutes less than 7% of the mitochondrial genome. The rapid development of technology for automated DNA sequencing has made it possible to study the complete mtDNA genomes in large numbers of individuals, opening the field of mitochondrial population genomics. Here we describe a suitable methodology for determining the complete human mitochondrial sequence and the global mtDNA diversity in humans. Also, we discuss the implications of the results with respect to the different hypotheses for the evolution of modern humans.  相似文献   

13.
Two major Ovis aries mitochondrial DNA (mtDNA) haplogroups have been described in independent studies. HinfI RFLP data of mitochondrial genomes from a large sample set (n = 239) indicated an ancient mutation which differentiates between the two mtDNA types. A completely determined sheep mtDNA sequence was used to assign this mutation to the COI gene and to develop a PCR based assay discriminating between the two phylogenetic branches. The haplogroup specificity of the mutation was further investigated in 26 randomly selected individuals. The animals were unequivocally assigned to their respective groups on the basis of the developed test and their complete control region sequences. The assay provides a rapid and economic means of discriminating between both major domestic sheep mtDNAs.  相似文献   

14.
Archeological evidence suggests that the iconographic and technological developments that took place in the highlands around Lake Titicaca in the Central Andean region had an influence on the cultural elaborations of the human groups in the valleys and the Pacific coast of northern Chile. In a previous communication, we were able to show, by means of a distance analysis, that a craniofacial differentiation accompanied the process of cultural evolution in the valleys (Rothhammer and Santoro [2001] Lat. Am. Antiq. 12:59-66). Recently, numerous South Amerindian mtDNA studies were published, and more accurate molecular techniques to study ancient mtDNA are available. In view of these recent developments, we decided 1) to study chronological changes of ancient mtDNA haplogroup frequencies in the nearby Lluta, Azapa, and Camarones Valleys, 2) to identify microevolutionary forces responsible for such changes, and 3) to compare ancient mtDNA haplogroup frequencies with previous data in order to validate craniometrical results and to reconstruct the biological history of the prehistoric valley groups in the context of their interaction with culturally more developed highland populations. From a total of 97 samples from 83 individuals, 68 samples (61 individuals) yielded amplifications for the fragments that harbor classical mtDNA markers. The haplogroup distribution among the total sample was as follows: 26.2%, haplogroup A; 34.4%, haplogroup B; 14.8%, haplogroup C; 3.3%, haplogroup D; and 21.3%, other haplogroups. Haplogroup B tended to increase, and haplogroup A to decrease during a 3,900-year time interval. The sequence data are congruent with the haplogroup analysis. In fact, the sequencing of hypervariable region I of 30 prehistoric individuals revealed 43 polymorphic sites. Sequence alignment and subsequent phylogenetic tree construction showed two major clusters associated with the most common restriction haplogroups. Individuals belonging to haplogroups C and D tended to cluster together with nonclassical lineages.  相似文献   

15.
Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.  相似文献   

16.
The mtDNA 1555A>G mutation was considered to be one of the most common causes of aminoglycoside-induced and non-syndromic hearing loss. However, this mutation was always found in homoplasmy with high phenotypic heterogeneity. Recently this mutation in heteroplasmy has been reported in several studies. In the present study, we have collected a large Chinese family harboring heteroplasmic mtDNA 1555A>G mutation with diverse clinical phenotypes. To investigate the relationship between the mutation load and the severity of hearing loss under Eastern Asian background, we performed clinical, molecular, genetic and phylogenic analysis. This pedigree was characterized by coexistence of eight subjects with homoplasmic mutation and ten subjects with various degrees of heteroplasmy, and the results suggested that there was a strong correlation between the mutation load and the severity/age-onset of hearing loss (r=0.758, p<0.001). We noticed that the mutation level of offspring was associated with their mothers' in this pedigree, which indicated that maybe exist a regular pattern during the process of the heteroplasmic transmission. In addition, analysis of the complete mtDNA genome of this family revealed that it belonged to Eastern Asian haplogroup B4C1. In addition, a rare homoplasmic mtDNA 9128T>C variant was identified, it located at a strictly conserved site of mtDNA ATP6 gene.  相似文献   

17.
Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA) have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing.  相似文献   

18.
Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele‐specific real‐time quantitative PCR (RT‐qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter‐selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species.  相似文献   

19.
Different classes of molecular markers occasionally yield discordant views of population structure within a species. Here, we examine the distribution of molecular variance from 14 polymorphic loci comprising four classes of molecular markers within approximately 400 blue marlin individuals (Makaira nigricans). Samples were collected from the Atlantic and Pacific Oceans over 5 years. Data from five hypervariable tetranucleotide microsatellite loci and restriction fragment length polymorphism (RFLP) analysis of whole molecule mitochondrial DNA (mtDNA) were reported and compared with previous analyses of allozyme and single-copy nuclear DNA (scnDNA) loci. Temporal variance in allele frequencies was nonsignificant in nearly all cases. Mitochondrial and microsatellite loci revealed striking phylogeographic partitioning among Atlantic and Pacific Ocean samples. A large cluster of alleles was present almost exclusively in Atlantic individuals at one microsatellite locus and for mtDNA, suggesting that, if gene flow occurs, it is likely to be unidirectional from Pacific to Atlantic oceans. Mitochondrial DNA inter-ocean divergence (FST) was almost four times greater than microsatellite or combined nuclear divergences including allozyme and scnDNA markers. Estimates of Neu varied by five orders of magnitude among marker classes. Using mathematical and computer simulation approaches, we show that substantially different distributions of FST are expected from marker classes that differ in mode of inheritance and rate of mutation, without influence of natural selection or sex-biased dispersal. Furthermore, divergent FST values can be reconciled by quantifying the balance between genetic drift, mutation and migration. These results illustrate the usefulness of a mitochondrial analysis of population history, and relative precision of nuclear estimates of gene flow based on a mean of several loci.  相似文献   

20.
The Careproctus rastrinus species complex, widely known from the North Pacific, has been revealed recently to include nine genetically divergent groups on the basis of mitochondrial DNA (mtDNA) sequence variations. Herein we describe an AFLP analysis that focuses on three closely related groups in order to clarify the evolutionary history of the species complex in the Sea of Japan and off the Pacific coast of Japan. A principal coordinate analysis indicated the absence of nuclear divergence in two groups defined by mtDNA variations in the Sea of Japan, whereas another group from the Pacific coast of northern Japan was clearly distinct. This suggests extensive gene flow between two groups in the Sea of Japan as a result of secondary contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号