首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Sema4C is a member of transmembrane semaphorin proteins which regulate axonal guidance in the developing nervous system. The expression of Sema4C was dramatically induced not only during differentiation of C2C12 mouse myoblasts, but also during injury-induced skeletal muscle regeneration. C2C12 cells stably or transiently expressing Sema4C both showed increased myogenic differentiation reflected by accelerated myotube formation and expression of muscle-specific proteins. Overexpression of Sema4C elicited p38 phosphorylation directly, and the effects of Sema4C during myogenic differentiation could be abolished by the p38alpha-specific inhibitor SB203580. Knockdown of Sema4C by siRNA transfection during C2C12 myoblasts differentiation could suppress the phosphorylation of p38 followed by dramatically diminished myotube formation. Sema4C could activate the myogenin promoter during myogenic differentiation. This activation could be abolished by p38 inhibitor SB203580. Taken together, these observations reveal novel functional potentialities of Sema4C which suggest that Sema4C promotes terminal myogenic differentiation in a p38 MAPK-dependent manner.  相似文献   

2.
利用Ad5腺病毒载体系统构建人Sema4C基因重组腺病毒表达载体并在成肌细胞系C2C12中表达,并初步探讨Sema4C基因在成肌发育过程中的可能作用。利用脂质体介导重组腺病毒载体转染HEK293细胞,包装出完整的腺病毒;将重组腺病毒载体感染C2C12成肌细胞后,利用激光共聚焦显微镜观察发现12h即有绿色荧光表达,24h后绿色荧光蛋白表达最强;流式细胞仪检测病毒的感染效率几乎达100%。WB检测结果表明感染重组腺病毒载体组C2C12细胞Sema4C蛋白的表达量明显高于空载体对照组(P<0.01)。为了进一步观察Sema4C基因对C2C12细胞增殖分化的影响,流式细胞仪检测了病毒感染48h后C2C12细胞的增殖指数,并对感染后诱导分化的C2C12细胞的分化情况进行了观察。我们的结果首次表明,过表达外源性人Sema4C基因不仅能使C2C12细胞的G0/G1期比例增加,细胞的增殖指数下降,同时在分化培养条件下还能促进C2C12细胞肌管的形成。  相似文献   

3.
为研究脑信号蛋白家族(Semaphorins)成员Sema7A对成肌细胞增殖和分化的影响,本文设计并合成了Sema7A基因的小干扰RNA(small interfering RNA,siRNA),用此siRNA转染C2C12成肌细胞.通过Hoechst核染和流式细胞术检测细胞增殖情况,免疫荧光检测肌管的形成情况,real-time qPCR和Western印迹技术检测成肌标记基因的变化.结果显示,干扰Sema7A后,C2C12成肌细胞增殖减慢,处在G2和S期的细胞所占的比例明显下降,而G1期细胞的比例升高.免疫荧光检测结果显示,干扰Sema7A后,肌管的直径及MyHC+细胞所占比例均显著降低.Real-time qPCR和Western印迹结果也显示,肌肉分化标志基因MyoD、MyoG、MyHC的mRNA及蛋白质表达均下降.进一步检测Sema7A受体下游信号通路发现,干扰Sema7A后,其下游信号分子PI3K和AKT的磷酸化水平被下调.以上结果表明,Sema7A可以调节C2C12成肌细胞的增殖和分化,可能是通过其受体作用于PI3K/AKT信号通路实现的,这为进一步研究Sema7A在骨骼肌发育中的作用提供实验基础.  相似文献   

4.
5.
In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposure to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.  相似文献   

6.
7.
Reversine has been shown to induce dedifferentiation of C2C12 murine myoblasts into multipotent progenitor cells. However, little is known about the key regulators mediating the dedifferentiation induced by reversine. Here, we show that large scale miRNA gene expression profiling of reversine-treated C2C12 myoblasts identifies a down-regulated miRNA, miR-133a, involved in dedifferentiation of myoblasts. Reversine treatment results in up- and down-regulated miRNA profiles. Among miRNAs affected by reversine, the level of muscle-specific miR-133a, which has been shown to be up-regulated during muscle development and to suppress differentiation into other lineages, is markedly reduced by treatment of C2C12 myoblasts with reversine. In parallel, reversine decreases the expression and recruitment of myogenic factor, SRF, to the enhancer regions of miR-133a. Sequentially, down-regulation of miR-133a by reversine is accompanied by a decrease in active histone modifications including trimethylation of histone H3K4 and H3K36, phosphorylation of H3S10, and acetylation of H3K14 on the miR-133a promoter, leading to dissociation of RNA polymerase II from the promoter. Furthermore, inhibition of miR-133a by transfection of C2C12 myoblasts with miR-133a inhibitor increases the expression of osteogenic lineage marker, Ogn, and adipotenic lineage marker, ApoE, similar to that in response to reversine. In contrast, the co-overexpression of miR-133a mimic reversed the effect of reversine on C2C12 myoblast dedifferentiation. Taken together, the results indicate that reversine induces a multipotency of C2C12 myoblasts by suppression of miR-133a expression through depletion of active histone modifications, and suggest that miR-133a is a potential miRNA regulating the reversine-induced dedifferentiation. Collectively, our findings provide a mechanistic rationale for the application of reversine to dedifferentiation of somatic cells.  相似文献   

8.
In a previous study investigating the effects of low temperature on skeletal muscle differentiation, we demonstrated that C2C12 mouse myoblasts cultured at 30 °C do not express myogenin, a myogenic regulatory factor (MRF), or fuse into multinucleated myotubes. At this low temperature, the myoblasts continuously express Id3, a negative regulator of MRFs, and do not upregulate muscle-specific microRNAs. In this study, we examined if insulin-like growth factor-I (IGF-I) and a stable form of vitamin C (L-ascorbic acid phosphate) could alleviate the low temperature-induced inhibition of myogenic differentiation in C2C12 cells. Although the addition of either IGF-I or vitamin C alone could promote myogenin expression in C2C12 cells at 30 °C, elongated multinucleated myotubes were not formed unless both IGF-I and vitamin C were continuously administered. In human skeletal muscle cells, low temperature-induced blockage of myogenic differentiation was also ameliorated by exogenous IGF-I and vitamin C. In addition, we demonstrated that satellite cells of IGF-I overexpressing transgenic mice in single-fiber culture expressed myogenin at a higher level than those of wild-type mice at 30 °C. This study suggests that body temperature plays an important role in myogenic differentiation of endotherms, but the sensitivity to low temperature could be buffered by certain factors in vivo, such as IGF-I and vitamin C.  相似文献   

9.
10.
RIP2 is an important regulator of myoblast proliferation and differentiation. We have previously demonstrated that in the myoblast cell line C2C12 and in primary myoblasts, downregulation of rip2 gene expression is a prerequisite for differentiation. To further study the role of rip genes in myogenesis, we compared expression patterns of rip1–4 in two myoblast cell lines, C2C12 and C2F3, after the induction of differentiation. These two cell lines are derived from the same clonal origin, but differ with respect to their differentiation behaviour: specifically, the differentiation process is slower and more incomplete in C2F3 cells. When analyzing cells up to 4 days after the induction of differentiation, we found no downregulation of rip2 gene expression in C2F3 cells, which might be linked to the low differentiation potential of these cells. In addition, in contrast to C2C12 cells, the rip3 gene was not expressed in C2F3 cells. To further study the role of rip genes in the regulation of myoblast growth and differentiation, we analyzed expression patterns of rip14 in rhabdomyosarcoma cell lines. We found that in these cells, rip2 expression was not downregulated after the induction of differentiation. Furthermore, in contrast to normal myoblasts, they did not express the rip3 and rip4 genes. Thus, we focused on the functional role of RIP2 in rhabdomyosarcoma cells. Inhibition of rip2 gene expression in C2C12 and in rhabdomyosarcoma cells using specific siRNAs led to decreased proliferation and promoted the differentiation process of these cells. These data indicate that differential expression of rip genes can be associated with abnormal growth and differentiation behaviour of skeletal myoblasts.  相似文献   

11.
It is widely acknowledged that cultured myoblasts can not differentiate at very low density. Here we analyzed the mechanism through which cell density influences myogenic differentiation in vitro. By comparing the behavior of C2C12 myoblasts at opposite cell densities, we found that, when cells are sparse, failure to undergo terminal differentiation is independent from cell cycle control and reflects the lack of p27Kip1 and MyoD in proliferating myoblasts. We show that inhibition of p27Kip1 expression impairs C2C12 cell differentiation at high density, while exogenous p27Kip1 allows low-density cultured C2C12 cells to enter the differentiative program by regulating MyoD levels in undifferentiated myoblasts. We also demonstrate that the early induction of p27Kip1 is a critical step of the N-cadherin-dependent signaling involved in myogenesis. Overall, our data support an active role of p27Kip1 in the decision of myoblasts to commit to terminal differentiation, distinct from the regulation of cell proliferation, and identify a pathway that, reasonably, operates in vivo during myogenesis and might be part of the phenomenon known as "community effect".  相似文献   

12.
The ability of a 43 kDa stichocyte protein from Trichinella spiralis (Tsp43) to interfere with mammalian skeletal muscle gene expression was investigated. A MYC-tagged Tsp43 construct was expressed as a recombinant protein in C2C12 myoblasts. Transfection with low amounts of expression plasmid was required for successful expression of the protein. This construct had apparent toxic effects on transfected myoblasts and ectopic green fluorescent protein expression was suppressed in myoblasts co-transfected with the Tsp43 construct. These effects may result from similarities of Tsp43 to DNase II. Use of the general DNase inhibitor aurintricarboxylic acid (ATA) enhanced expression of MYC-Tsp43 in transfected muscle cells. Myoblasts transfected with Tsp43 did not fuse well when cultured under differentiation conditions without ATA. In contrast, transfected myoblasts transiently cultured with ATA underwent fusion and differentiation. Under short-term differentiation conditions without ATA, unfused myoblasts nevertheless expressed both MYC-Tsp43 and myosin heavy chain. Collectively, the results support that Tsp43 has a role in the T. spiralis life cycle that is distinct from repressing muscle gene expression during the muscle phase of infection. While the function of Tsp43 as a DNase is under debate, the effects of ATA on transfected muscle cells were consistent with this possibility.  相似文献   

13.
Myofibroblasts are one of the key cellular components involved in fibrosis of skeletal muscle as well as in other tissues. Transforming growth factor-beta1 (TGF-beta1) stimulates differentiation of mesenchymal cells into myofibroblasts, but little is known about the regulatory mechanisms of myofibroblastic differentiation. Since Notch2 was shown to be downregulated in TGF-beta1-induced non-muscle fibrogenic tissue, we investigated whether Notch2 also has a distinctive role in myofibroblastic differentiation of myogenic cells induced by TGF-beta1. TGF-beta1 treatment of C2C12 myoblasts led to expression of myofibroblastic marker alpha-smooth muscle actin (alpha-SMA) and collagen I with concomitant downregulation of Notch2 expression. Overexpression of active Notch2 inhibited TGF-beta1-induced expression of alpha-SMA and collagen I. Interestingly, transient knockdown of Notch2 by siRNA in C2C12 myoblasts and primary cultured muscle-derived progenitor cells resulted in differentiation into myofibroblastic cells expressing alpha-SMA and collagen I without TGF-beta1 treatment. Furthermore, we found Notch3 was counter-regulated by Notch2 in C2C12 cells. These findings suggest that Notch2 is inhibiting differentiation of myoblasts into myofibroblasts with downregulation of Notch3 expression.  相似文献   

14.
The promyogenic cell surface molecule Cdo is required for activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells c3 (NFATc3) induced by netrin-2 in myogenic differentiation. However, the molecular mechanism leading to NFATc3 activation is unknown. Stromal interaction molecule 1 (Stim1), an internal calcium sensor of the endoplasmic reticulum store, promotes myogenesis via activation of NFATc3. In this study we investigated the functional interaction between Cdo and Stim1 in myogenic differentiation. Overexpression and depletion of Stim1 enhanced or decreased myotube formation, respectively. Of interest, Stim1 protein levels were decreased in Cdo-deficient perinatal hindlimb muscles or primary myoblasts; this correlates with defective NFATc3 activation in Cdo(-/-) myoblasts upon differentiation. Forced activation of NFATc3 by overexpression of calcineurin restored differentiation of Cdo-depleted C2C12 myoblasts. Furthermore, Cdo and Stim1 formed a complex in 293T cells or in differentiating C2C12 myoblasts. The netrin-2-mediated NFATc3 activation was coincident with robust interactions between Cdo and Stim1 in myoblasts and the ERK-mediated Stim1 phosphorylation at serine 575. The serine 575 phosphorylation was enhanced in C2C12 cells upon differentiation, and the alanine substitution of serine 575 failed to restore differentiation of Stim1-depleted myoblasts. Taken together, the results indicate that cell adhesion signaling triggered by netrin-2/Cdo induces Stim1 phosphorylation at serine 575 by ERK, which promotes myoblast differentiation.  相似文献   

15.
Targeted migration of muscle precursor cells to the anlagen of limb muscles is a complex process, which is only partially understood. We have used Lbx1 mutant mice, which are unable to establish correct migration paths of muscle precursor cells into the limbs to identify new genes involved in the accurate placement of myogenic cells in developing muscles. We found that mKlhdc2 (Kelch domain containing-2), a novel member of the family of Kelch domain containing proteins, is significantly downregulated in Lbx1 homozygous mutant embryos. Functional characterization of mKlhdc2 by targeted overexpression in 10T1/2 fibroblasts and C2C12 muscle cells rendered these cells unable to respond to chemoattractants such as HGF. Furthermore, C2C12 myoblasts overexpressing mKlhdc2 display altered cellular morphology and are unable to differentiate into mature myotubes. Our results suggest that a tightly controlled expression of mKlhdc2 is essential for a faithful execution of the myogenic differentiation and migration program.  相似文献   

16.
R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway.  相似文献   

17.
Eukaryotic initiation factor 2-associated glycoprotein, p67, protects eIF2 from phosphorylation by its kinases. To understand the roles of p67 during skeletal muscle differentiation of mouse C2C12 myoblasts, we measured the level of p67 during myotube formation. We noticed that the level of p67 increases during myoblast differentiation and this increased level is controlled at the translational stage. The stability of p67 in the myotubes is due to its low turnover rate. The phosphorylation of the extracellular signal-regulated kinases (ERKs 1 and 2) is high in growth-factor-mediated cycling of C2C12 myoblasts and this phosphorylation decreases at 96 h when these myoblasts are grown in differentiation medium. At this time of differentiation, the level of p67 is higher compared to 0 h of differentiation. p67 binds to ERK2 and inhibits its activity in vitro. Taken together, these results suggest that the stability of p67 increases during myotube formation while inhibiting the phosphorylation of ERKs 1 and 2.  相似文献   

18.
DTX4(Deltex 4 homolog)蛋白属于Deltex家族成员|Deltex家族是Notch信号通路的调节因子. 已知Notch信号通路在成肌分化中发挥重要作用. 然而,DTX4是否参与调控肌肉发育尚未有报道. 本研究探索DTX4对成肌分化的影响及作用机制. 实时定量PCR和蛋白质印迹分析揭示,伴随小鼠C2C12成肌细胞(myoblast)分化为肌管(myotube)过程,成肌分化标志蛋白肌球蛋白重链(myosin heavy-chain,MyHC)、肌细胞生成素(myogenin)表达逐渐升高,DTX4 mRNA及蛋白质表达水平也逐渐升高. 通过顺序专一的siRNA敲减DTX4表达后,C2C12成肌细胞肌管面积和肌管融合指数明显减少|MyHC、肌细胞生成素蛋白表达水平明显降低|但ERK信号通路未见明显变化.上述结果表明,敲减DTX4表达抑制C2C12细胞成肌分化.我们的结果提示,DTX4可能参与C2C12细胞成肌分化.  相似文献   

19.
Evidence shows that extracellular ATP signals influence myogenesis, regeneration and physiology of skeletal muscle. Present work was aimed at characterizing the extracellular ATP signaling system of skeletal muscle C2C12 cells during differentiation. We show that mechanical and electrical stimulation produces substantial release of ATP from differentiated myotubes, but not from proliferating myoblasts. Extracellular ATP-hydrolyzing activity is low in myoblasts and high in myotubes, consistent with the increased expression of extracellular enzymes during differentiation. Stimulation of cells with extracellular nucleotides produces substantial Ca(2+) transients, whose amplitude and shape changed during differentiation. Consistently, C2C12 cells express several P2X and P2Y receptors, whose level changes along with maturation stages. Supplementation with either ATP or UTP stimulates proliferation of C2C12 myoblasts, whereas excessive doses were cytotoxic. The data indicate that skeletal muscle development is accompanied by major functional changes in extracellular ATP signaling.  相似文献   

20.
The development of skeletal muscle is a complex process involving the proliferation, differentiation, apoptosis, and changing of muscle fiber types in myoblasts. Many reports have described the involvement of microRNAs in the myogenesis of myoblasts. In this study, we found that the expression of miR-152 was gradually down-regulated during myoblast proliferation, but gradually up-regulated during the differentiation of myoblasts. Transfection with miR-152 mimics restrained cell proliferation and decreased the expression levels of cyclin E, CDK4, and cyclin D1, but promoted myotube formation and significantly increased the mRNA expression levels of MyHC, MyoD, MRF4, and MyoG in C2C12 myoblasts. However, treatment with miR-152 inhibitors promoted cell proliferation and restrained differentiation. Moreover, over-expression of miR-152 significantly decreased E2F3 production in C2C12 myoblasts. A luciferase assay confirmed that miR-152 could bind to the 3′ UTR of E2F3. In conclusion, this study showed that miR-152 inhibited proliferation and promoted myoblast differentiation by targeting E2F3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号