首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 can undergo inactivation following monooxygenase reactions in liver microsomes of untreated, phenobarbital and 3-methylcholanthrene-treated rats and rabbits. The acceleration of cytochrome P450 loss in the presence of catalase inhibitors (sodium azide, hydroxylamine) indicates that hydrogen peroxide is involved in hemoprotein degradation. It was revealed that cytochrome P450 is inactivated mainly by H2O2 formed through peroxy complex breakdown, whereas H2O2 formed via the dismutation of superoxide anions produces a slight inactivating effect. The hydrogen peroxide added outside or formed by a glucose-glucose oxidase system has less of an inactivating effect than H2O2 produced within the cytochrome P450 active center. Self-inactivation of cytochrome P450 during oxygenase reactions is highly specific. Other components of the monooxygenase system, such as cytochrome b5, NADH- and NADPH-specific flavorproteins, undergo no inactivation. The alterations in phospholipid content and in the rate of lipid peroxidation were not observed as well. The inactivation of cytochrome P450 by H2O2 is the result of heme loss or destruction without cytochrome P420 formation. Such. a mechanism operates with different substrates and cytochrome P450 species catalyzing the partially coupled monooxygenase reactions.  相似文献   

2.
The interaction of heme nonapeptide (a proteolytic product of cytochrome c) with purified NADH:cytochrome b5 (EC 1.6.2.2) and NADPH:cytochrome P-450 (EC 1.6.2.4) reductases was investigated. In the presence of heme nonapeptide, NADH or NADPH were enzymatically oxidized to NAD+ and NADP+, respectively. NAD(P)H consumption was coupled to oxygen uptake in both enzyme reactions. In the presence of carbon monoxide the spectrum of a carboxyheme complex was observed during NAD(P)H oxidation, indicating the existence of a transient ferroheme peptide. NAD(P)H oxidation could be partially inhibited by cyanide, superoxide dismutase and catalase. Superoxide and peroxide ions (generated by enzymic xanthine oxidation) only oxidized NAD(P)H in the presence of heme nonapeptide. Oxidation of NAD(P)H was more rapid with O2- than O2-2. We suggest that a ferroheme-O2 and various heme-oxy radical complexes (mainly ferroheme-O-2 complex) play a crucial role in NAD(P)H oxidation.  相似文献   

3.
The reaction of hydrogen peroxide and certain aromatic aldehydes with cytochrome P450BM3-F87G results in the covalent modification of the heme cofactor of this monooxygenase. Analysis of the resulting heme by electronic absorption spectrophotometry indicates that the reaction in the BM3 isoform is analogous to that in P450(2B4), which apparently occurs via a peroxyhemiacetal intermediate [Kuo et al., Biochemistry, 38 (1999) 10511]. It was observed that replacement of the Phe-87 in the P450BM3 by the smaller glycyl residue was essential for the modification to proceed, as the wild-type enzyme showed no spectral changes under identical conditions. The kinetics of this reaction were examined by stopped-flow spectrophotometry with 3-phenylpropionaldehyde and 3-phenylbutyraldehyde as reactants. In each case, the process of heme modification was biphasic, with initial bleaching of the Soret absorbance, followed by an increase in absorbance centered at 430 nm, consistent with meso-heme adduct formation. The intermediate formed during phase I also showed an increased absorbance between 700 and 900 nm, relative to the native heme and the final product. Phase I showed a linear dependence on peroxide concentration, whereas saturation kinetics were observed for phase II. All of these observations are consistent with a mechanism involving radical attack at the gamma-meso position of the heme cofactor, resulting in the intermediate formation of an isoporphyrin, the deprotonation of which produces the gamma-meso-alkyl heme derivative.  相似文献   

4.
It was shown that the crucial role in the inactivation of microsomal cytochrome P-450 in reactions of hydroxylation of type I (DMA, AP, BPh, p-NA) and type II (AN) substrates belongs to H2O2 directly formed in the enzyme active center during the decomposition of the peroxy complex. Hydrogen peroxide formed via an indirect pathway during the dismutation of superoxide radicals does not play a role in the hemoprotein inactivation.  相似文献   

5.
High-valent iron in chemical and biological oxidations   总被引:1,自引:0,他引:1  
Various aspects of the reactivity of iron(IV) in chemical and biological systems are reviewed. Accumulated evidence shows that the ferryl species [Fe(IV)O](2+) can be formed under a variety of conditions including those related to the ferrous ion-hydrogen peroxide system known as Fenton's reagent. Early evidence that such a species could hydroxylate typical aliphatic C-H bonds included regioselectivities and stereospecificities for cyclohexanol hydroxylation that could not be accounted for by a freely diffusing hydroxyl radical. Iron(IV) porphyrin complexes are also found in the catalytic cycles of cytochrome P450 and chloroperoxidase. Model oxo-iron(IV) porphyrin complexes have shown reactivity similar to the proposed enzymatic intermediates. Mechanistic studies using mechanistically diagnostic substrates have implicated a radical rebound scenario for aliphatic hydroxylation by cytochrome P450. Likewise, several non-heme diiron hydroxylases, AlkB (Omega-hydroxylase), sMMO (soluble methane monooxygenase), XylM (xylene monooxygenase) and T4moH (toluene monooxygenase) all show clear indications of radical rearranged products indicating that the oxygen rebound pathway is a ubiquitous mechanism for hydrocarbon oxygenation by both heme and non-heme iron enzymes.  相似文献   

6.
The active oxygenating intermediate, a ferryl-oxo-(II) porphyrin cation radical (compound I), in substrate-bound cytochrome P450(cam) (P450(cam)) has eluded detection and kinetic analysis for several decades. Upon rapid mixing of peroxides-H(2)O(2) and m-CPBA with substrate-bound forms of P450(cam), we observed an intermediate with spectral features characteristic of compound I. Unlike in H(2)O(2), kinetic investigation on the reaction of m-CPBA with various substrate (camphor, adamantone, and norcamphor)-bound P450(cam) and its Y96A mutant shows a preferential binding of the aromatic end group of m-CPBA to the active-site of the enzyme and modulation of compound I formation by the local environment of heme active-site. The results presented in this paper describe the importance of heme environment in modulating formation of compound I, and form the first kinetic analysis of this intermediate in the peroxide shunt pathway of substrate-bound P450(cam).  相似文献   

7.
Nalpha-Acetylated microperoxidase-8 (Ac-MP-8) is a water soluble, ferric heme model for peroxidases. We report here that Ac-MP-8 catalyzes catalase-type reaction in addition to peroxidase-type and cytochrome P450-type reactions. The catalase activity of Ac-MP-8 was determined by the Clark oxygen electrode, which measures the production of oxygen in solution. The Km and kcat of the decomposition of hydrogen peroxide (H2O2) catalyzed by Ac-MP-8 are 40.9 mm and 4.1 per s, respectively. The specificity constant (kcat/Km) of Ac-MP-8 in catalase-type reaction of H2O2 is 100.2,/m/s, which is 5- to 12- and 50- to 100-fold less than those of MPs in cytochrome P450-type reaction of aniline/H2O2 and peroxidase-type reaction of o-methoxyphenol/H2O2, respectively. These results indicate that Ac-MP-8 can catalyze three different types of reactions, and the relative catalytic specificities of Ac-MP-8 with a histidyl ligand exhibit the following orders: peroxidase-type > cytochrome P450-type > catalase-type reactions. Comparisons of the enzyme activities of Ac-MP-8 suggest that the fifth ligands of hemoproteins influence the ratio of the three types of reactions.  相似文献   

8.
B K Fung  H K Yamane  I M Ota  S Clarke 《FEBS letters》1990,260(2):313-317
Treatment of purified cytochrome P-450 LM2 and its liposome-bound form with hydrogen peroxide led to complete destruction of the P-450 heme. The apoenzyme thus produced could be reconstituted to catalytically active cytochrome P-450 by incubation with hemin, the reconstitution efficiency being 50% for the soluble enzyme and 80% for the liposome-bound enzyme. The removal of heme from the soluble hemoprotein resulted in a 3-fold decrease in the efficiency of its incorporation into sonicated liposomes. The contents of 5 secondary structure forms in the native, apoand reconstituted holoenzymes were estimated from their circular dichroism spectra. It was thus found that the helix content increased from 34% to 60% upon removal of the heme from the native enzyme. We suggest that the increase in the helix content leads to a reduction of the incorporation efficiency into liposomal membranes.  相似文献   

9.
Bovine adrenocortical cytochrome P450scc (P450scc) was expressed in Escherichia coli and purified as the substrate bound, high-spin complex (16.7 nmol of heme per mg of protein, expression level in E. coli about 400-700 nmol/l). The recombinant protein was characterized by comparison with native P450scc purified from adrenal cortex mitochondria. To study the interaction of the electron transfer proteins during the functioning of the heme protein, recombinant P450scc was selectively modified with fluorescein isothiocyanate (FITC). The present paper shows that modified P450scc, purified by affinity chromatography using adrenodoxin-Sepharose to remove non-covalently bound FITC, retains the functional activity of the unmodified enzyme, including its ability to bind adrenodoxin. Based on the efficiency of resonance fluorescence energy transfer in the donor-acceptor pair, FITC-heme, we calculated the distance between Lys(338), selectively labeled with the dye, and the heme of P450scc. The intensity of fluorescence from the label dramatically changes during: (a) denaturation of P450scc; (b) changing the spin state or redox potential of the heme protein; (c) formation of the carbon monoxide complex of reduced P450scc; (d) as well as during reactions of intermolecular interactions, such as changes of the state of aggregation, complex formation with the substrate, binding to the electron transfer partner adrenodoxin, or insertion of the protein into an artificial phospholipid membrane. Selective chemical modification of P450scc with FITC proved to be a very useful method to study the dynamics of conformational changes of the recombinant heme protein. The data obtained indicate that functionally important conformational changes of P450scc are large-scale ones, i.e. they are not limited only to changes in the dynamics of the protein active center. The results of the present study also indicate that chemical modification of Lys(338) of bovine adrenocortical P450scc does not dramatically alter the activity of the heme protein, but does result in a decrease of protein stability.  相似文献   

10.
Cytochrome P450(BM3)-F87G reacts with aromatic aldehydes and hydrogen peroxide to generate covalent heme adducts in a reaction that may involve the formation of a stable isoporphyrin intermediate [Raner, G. M., Hatchell, A. J., Morton, P. E., Ballou, D. P., and Coon, M. J. (2000) J. Inorg. Biochem. 81, 153-160]. Electron paramagnetic resonance spectra for the proposed isoporphyrin intermediates generated using two different aromatic aldehydes suggest that, in each case, the heme remained coordinated to the apoenzyme via the cysteine thiolate, the metal center remained ferric low spin, and a slight distortion in the geometry of the pyrrole nitrogens occurred. Characterization of the resulting heme adducts via 1D and 2D NMR showed conclusively that the heme was modified at the gamma-meso position alone, and mass spectral analysis indicated loss of formate from the aldehyde prior to alkylation. The enzyme derivatives in which the hemes were covalently altered retained the characteristic UV/vis and EPR spectral properties of a P450, indicating that the heme was properly ligated in the active site. The modified enzymes were able to accept electrons from NADPH in the presence of lauric acid at a rate comparable to that of the unmodified forms, although oxidation of the lauric acid was not observed with either modified enzyme. Oxidation of 4-nitrophenol and 4-nitrocatechol was observed for both derivatives. However, 4-nitrocatechol oxidation was completely quenched in the presence of superoxide dismutase. The results are consistent with heme modification occurring through a peroxo-dependent pathway and also suggest that modification results in altered catalytic activity, rather than complete inactivation of the P450.  相似文献   

11.
The role of heme in the formation of cytochrome P-450 native structure was investigated. It was shown that treatment of purified and membrane-bound hemoproteins with H2O2 results in the total destruction of heme. After incubation with hemine the apoprotein thus obtained forms a catalytically active cytochrome P-450. The efficiency of this process depends on the enzyme microenvironment. The membrane-bound apoprotein may be reconstituted by 70-80%, whereas the soluble one--by 50%. It is concluded that the observed differences may be accounted for by a greater stability of the membrane-bound protein structure.  相似文献   

12.
The early steps in dioxygen activation by the monooxygenase cytochrome P450cam (CYP101) include binding of O2 to ferrous P450cam to yield the ferric-superoxo form (oxyP450cam) followed by an irreversible, long-range electron transfer from putidaredoxin to reduce the oxyP450cam. The steady state kinetic parameter kcat/Km(O2) has been studied by a variety of probes that indicate a small D2O solvent isotope effect (1.21 +/- 0.08), a very small solvent viscosogen effect, and a 16O/18O isotope effect of 1.0147 +/- 0.0007. This latter value, which can be compared with the 16O/18O equilibrium isotope effect of 1.0048 +/- 0.0003 measured for oxyP450cam formation, is attributed to a primarily rate-limiting outer-sphere electron transfer from the heme iron center as O2 that has prebound to protein approaches the active site cofactor. The electron transfer from putidaredoxin to oxyP450cam was investigated by rapid mixing at 25 degrees C to complement previous lower-temperature measurements. A rate of 390 +/- 23 s-1 (and a near-unity solvent isotope effect) supports the view that the long-range electron transfer from reduced putidaredoxin to oxyP450cam is rapid relative to dissociation of O2 from the enzyme. P450cam represents the first enzymatic reaction of O2 in which both equilibrium and kinetic 16O/18O isotope effects have been measured.  相似文献   

13.
Incubation of horseradish peroxidase with phenylhydrazine and H2O2 markedly depresses the catalytic activity and the intensity, but not position, of the Soret band. Approximately 11-13 mol of phenylhydrazine and 25 mol of H2O2 are required per mol of enzyme to minimize the chromophore intensity. The enzyme retains some activity after such treatment, but this activity is eliminated if the enzyme is isolated and reincubated with phenylhydrazine. The prosthetic heme of the enzyme does not react with phenylhydrazine to give a sigma-bonded phenyl-iron complex, as it does in other hemoproteins, but is converted instead to the delta-mesophenyl and 8-hydroxymethyl derivatives. The loss of activity is due more to protein than heme modification, however. The inactivated enzyme reacts with H2O2 to give a spectroscopically detectable Compound I. The results imply that substrates interact with the heme edge rather than with the activated oxygen of Compounds I and II and specifically identify the region around the delta-meso-carbon and 8-methyl group as the exposed sector of the heme. Horseradish peroxidase, in contrast to cytochrome P-450, generally does not catalyze oxygen-transfer reactions. The present results indicate that oxygen-transfer reactions do not occur because the activated oxygen and the substrate are physically separated by a protein-imposed barrier in horseradish peroxidase.  相似文献   

14.
The changes in the content of purified isolated cytochrome P-450 LM2 under the action of hydrogen peroxide and during its operation in a soluble reconstituted system were studied. It was found that cytochrome P-450 LM2 inactivation by hydrogen peroxide is accompanied by a decrease in the hemoprotein activity, loss of heme, oxidation of SH-groups and changes in the oligomeric state of the enzyme. There were some differences in the mechanisms of cytochrome P-450 LM2 inactivation under the action of H2O2 and during catalysis.  相似文献   

15.
Cytochrome c catalyzed the oxidation of various electron donors in the presence of hydrogen peroxide (H2O2), including 2-2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 4-aminoantipyrine (4-AP), and luminol. With ferrocytochrome c, oxidation reactions were preceded by a lag phase corresponding to the H2O2-mediated oxidation of cytochrome c to the ferric state; no lag phase was observed with ferricytochrome c. However, brief preincubation of ferricytochrome c with H2O2 increased its catalytic activity prior to progressive inactivation and degradation. Superoxide (O2-) and hydroxyl radical (.OH) were not involved in this catalytic activity, since it was not sensitive to superoxide dismutase (SOD) or mannitol. Free iron released from the heme did not play a role in the oxidative reactions as concluded from the lack of effect of diethylenetriaminepentaacetic acid. Uric acid and tryptophan inhibited the oxidation of ABTS, stimulation of luminol chemiluminescence, and inactivation of cytochrome c. Our results are consistent with an initial activation of cytochrome c by H2O2 to a catalytically more active species in which a high oxidation state of an oxo-heme complex mediates the oxidative reactions. The lack of SOD effect on cytochrome c-catalyzed, H2O2-dependent luminol chemiluminescence supports a mechanism of chemiexcitation whereby a luminol endoperoxide is formed by direct reaction of H2O2 with an oxidized luminol molecule, either luminol radical or luminol diazoquinone.  相似文献   

16.
The cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc comprises three consecutive monooxygenase reactions (22R-hydroxylation, 20S-hydroxylation, and C(20)-C(22) bond scission) that produces pregnenolone. The electron equivalents necessary for the oxygen activation are supplied from a 2Fe-2S type ferredoxin, adrenodoxin. We found that 1:1 stoichiometric binding of oxidized adrenodoxin to oxidized cytochrome P450scc complexed with cholesterol or 25-hydroxycholesterol caused shifts of the high-spin EPR signals of the heme moiety at 5 K. Such shifts were not observed for the low-spin EPR signals. Ligation of CO or NO to the reduced heme of cytochrome P450scc complexed with reduced adrenodoxin and various steroid substrates did not cause any change in the axial EPR spectrum of the reduced iron-sulfur center at 77 K. These results are in remarkable contrast to those obtained for the cytochrome P450cam-d-camphor-putidaredoxin ternary complex, suggesting that the mode of cross talk between adrenodoxin and cytochrome P450scc is very different from that in the Pseudomonas system. The difference may be primarily due to the location of the charged amino acid residues of the ferredoxins important for the interaction with the partner cytochrome P450.  相似文献   

17.
A unique cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 is strongly induced by phenobarbital (Narhi, L. O., and Fulco, A. J. (1982) J. Biol. Chem. 257, 2147-2150) and many other barbiturates (Kim, B.-H., and Fulco, A. J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). This monooxygenase has now been purified to homogeneity from pentobarbital-induced bacteria as a single polypeptide with a molecular weight of 119,000 +/- 5,000 daltons. In the presence of NADPH and O2, it can catalyze the oxygenation of long chain fatty acids without the aid of any other protein. The enzyme has a catalytic center activity of 4,600 nmol of fatty acid oxygenated per nmol of P-450 (the highest activity yet reported for a P-450-dependent monooxygenase) and also functions as a highly active cytochrome c reductase in the presence of NADPH. The purified holoenzyme is a soluble protein containing 40 mol % hydrophobic amino acid residues and 1 mol each of FAD and FMN/mol of heme. It is isolated and purified in the low spin form but is converted to the high spin form in the presence of long chain fatty acids. The enzyme, which catalyzes the omega-2 hydroxylation of saturated fatty acids and the hydroxylation and epoxidation of unsaturated fatty acids has its highest affinity (Km = 2 +/- 1 microM) for the C15 and C16 chain lengths.  相似文献   

18.
以人工饲料添加法测定了 0 5%的棉酚和烟碱对棉铃虫的生长和细胞色素P 4 50单加氧酶 (简称P 4 50酶系 )活性的影响。研究结果显示 ,在测定浓度下 ,高龄棉铃虫短期取食含棉酚和烟碱的人工饲料后 ,对幼虫的生长没有显著影响 ,由此表明 ,棉铃虫对其主要寄主植物中的次生物质棉酚和烟碱具有很好的适应能力。与此同时 ,棉铃虫中肠微粒体P 4 50酶系的蛋白组成和酶活性发生了不同的变化 ,有升有降 ,有的没有变化。棉铃虫可能通过调整P 4 50酶系的各种蛋白含量和酶的活力水平 ,来适应对植物次生物质的代谢解毒的需要。另外 ,棉铃虫取食棉酚和烟碱后 ,细胞色素B5含量均显著提高 ,而细胞色素P 4 50含量均显著降低 ,细胞色素B5在棉铃虫对棉酚和烟碱的解毒代谢中可能发挥着更为重要的作用  相似文献   

19.
The initial steps in glucosinolate biosynthesis are thought to proceed from amino acids, via N-hydroxy amino acids, to aldoximes. We showed previously that microsomes from green leaves of oilseed rape (Brassica napus cv Bienvenu) contain two distinct monooxygenases that catalyze the conversion of homophenylalanine and dihomomethionine to their respective aldoximes. Further characterization of these enzymes has now demonstrated that the latter enzyme catalyzes the NADPH-dependent oxidative decarboxylation of two higher homologs of methionine, in addition to dihomomethionine. No activity was found for either enzyme with L-methionine, DL-homomethionine, L-phenylalanine, L-tyrosine, or L-tryptophan. Both of these rape monooxygenase activities are dependent on O2, not requiring any other O2 species or radical. The presence of an unoxidized sulfur atom and its relative position in the side chain of the aliphatic substrates are important for binding to the active site of the methionine-homolog enzyme. Neither enzyme has any characteristics of a cytochrome P450-type enzyme, and antiserum raised against cytochrome P450 reductase did not significantly inhibit monooxygenase activity.  相似文献   

20.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号