首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fatty acid-binding protein (FABP) family consists of a number of conserved cytoplasmic proteins with roles in intracellular lipid transport, storage, and metabolism. Examination of a comprehensive leukocyte gene expression database revealed strong expression of the adipocyte FABP aP2 in human monocyte-derived dendritic cells (DCs). We isolated bone marrow-derived DC from aP2-deficient mice, and showed that expression of DC cytokines including IL-12 and TNF was significantly impaired in these cells. Degradation of IkappaBalpha was also impaired in aP2-deficient DCs, indicative of reduced signaling through the IkappaB kinase-NF-kappaB pathway. The cytokine defect was selective because there was no effect on Ag uptake or expression of MHC class II, CD40, CD80, or CD86. In an MLR, aP2-deficient DCs stimulated markedly lower T cell proliferation and cytokine production than did wild-type DCs. Moreover, aP2-deficient mice immunized with keyhole limpet hemocyanin/CFA showed reduced production of IFN-gamma by restimulated draining lymph node cells, suggesting a similar defect in DC function in vivo. Similarly, infection of aP2-deficient mice with the natural mouse pathogen ectromelia virus resulted in substantially lower production of IFN-gamma by CD8+ T cells. Thus, FABP aP2 plays an important role in DC function and T cell priming, and provides an additional link between metabolic processes and the regulation of immune responses.  相似文献   

2.
Macrophages are a prominent component of the effector cell compartment in a number of CD4+ T cell-mediated organ-specific autoimmune diseases. In this study, we investigated the role of the sialic acid binding Ig-like lectin sialoadhesin (Sn, Siglec-1) in a model of interphotoreceptor retinal binding protein peptide-induced experimental autoimmune uveoretinitis in mice with targeted deletion of Sn. Our data show that compared with wild-type mice, experimental autoimmune uveoretinitis is reduced in severity in the initial stages in the Sn knockout (KO) mice. In addition, there is a reduction in the proliferative capacity of T cells from the KO mice draining lymph nodes after immunization with interphotoreceptor retinal binding protein peptides, which is manifest some days before disease onset and persists for the duration of disease. Furthermore, activated T cells from the draining lymph nodes of Sn KO mice secrete lower levels of IFN-gamma. The data suggest a role for Sn in "fine tuning" the immune response to autoantigens by modulating T cell priming.  相似文献   

3.
Immunotherapy represents an appealing option to specifically target CNS tumors using the immune system. In this report, we tested whether adjunctive treatment with the TLR-7 agonist imiquimod could augment antitumor immune responsiveness in CNS tumor-bearing mice treated with human gp100 + tyrosine-related protein-2 melanoma-associated Ag peptide-pulsed dendritic cell (DC) vaccination. Treatment of mice with 5% imiquimod resulted in synergistic reduction in CNS tumor growth compared with melanoma-associated Ag-pulsed DC vaccination alone. Continuous imiquimod administration in CNS tumor-bearing mice, however, was associated with the appearance of robust innate immune cell infiltration and hemorrhage into the brain and the tumor. To understand the immunological mechanisms by which imiquimod augmented antitumor immunity, we tested whether imiquimod treatment enhanced DC function or the priming of tumor-specific CD8+ T cells in vivo. With bioluminescent, in vivo imaging, we determined that imiquimod dramatically enhanced both the persistence and trafficking of DCs into the draining lymph nodes after vaccination. We additionally demonstrated that imiquimod administration significantly increased the accumulation of tumor-specific CD8+ T cells in the spleen and draining lymph nodes after DC vaccination. The results suggest that imiquimod positively influences DC trafficking and the priming of tumor-specific CD8+ T cells. However, inflammatory responses induced in the brain by TLR signaling must also take into account the local microenvironment in the context of antitumor immunity to induce clinical benefit. Nevertheless, immunotherapeutic targeting of malignant CNS tumors may be enhanced by the administration of the innate immune response modifier imiquimod.  相似文献   

4.
Pertussis toxin enhances Th1 responses by stimulation of dendritic cells   总被引:8,自引:0,他引:8  
Pertussis toxin (PTX) has been widely used as an adjuvant to induce Th1-mediated organ-specific autoimmune diseases in animal models. However, the cellular and molecular mechanisms remain to be defined. In this study, we showed that dendritic cells (DC) stimulated with PTX (PTX-DC) were able to substitute for PTX to promote experimental autoimmune uveitis (EAU). EAU induced by PTX-DC revealed a typical Th1 response, characterized by high uveitogenic retinal Ag interphotoreceptor retinoid-binding protein (IRBP)-specific IFN-gamma and IL-12 production in the draining lymph nodes, as well as increased levels of anti-IRBP IgG2a and decreased levels of anti-IRBP IgG1 in the serum of IRBP-immunized mice. Furthermore, PTX-DC preferentially induced T cells to produce the Th1 cytokine, IFN-gamma. After being stimulated with PTX, DC exhibited up-regulation of MHC class II, CD80, CD86, CD40, and DEC205. PTX-DC had also increased allostimulatory capacity and IL-12 and TNF-alpha production. Serum IL-12 was increased in naive mice that received PTX-DC i.p. In addition, PTX activated extracellular signal-regulated kinase in DC. Following the inhibition of extracellular signal-regulated kinase signaling, the maturation of PTX-DC was reduced. Subsequently, the ability of PTX-DC to promote IFN-gamma production by T cells in vitro and to induce EAU in vivo was blocked. The results suggest that PTX might exert an adjuvant effect on DC to promote their maturation and the production of proinflammatory cytokines, thereby eliciting a Th1 response.  相似文献   

5.
A number of receptors and signaling pathways can influence the ability of dendritic cells (DC) to promote CD4(+) Th type 1 (Th1) responses. In contrast, the regulatory pathways and signaling events that govern the ability of DC to instruct Th2 cell differentiation remain poorly defined. In this report, we demonstrate that NF-kappaB1 expression within DC is required to promote optimal Th2 responses following exposure to Schistosoma mansoni eggs, a potent and natural Th2-inducing stimulus. Although injection of S. mansoni eggs induced production of IL-4, IL-5, and IL-13 in the draining lymph node of wild-type (WT) mice, NF-kappaB1(-/-) hosts failed to express Th2 cytokines and developed a polarized Ag-specific IFN-gamma response. In an in vivo adoptive transfer model in which NF-kappaB-sufficient OVA-specific DO11.10 TCR transgenic T cells were injected into OVA-immunized WT or NF-kappaB1(-/-) hosts, NF-kappaB1(-/-) APCs efficiently promoted CD4(+) T cell proliferation and IFN-gamma responses, but failed to promote Ag-specific IL-4 production. Further, bone marrow-derived DC from NF-kappaB1(-/-) mice failed to promote OVA-specific Th2 cell differentiation in in vitro coculture studies. Last, S. mansoni egg Ag-pulsed NF-kappaB1(-/-) DC failed to prime for Th2 cytokine responses following injection into syngeneic WT hosts. Impaired Th2 priming by NF-kappaB1(-/-) DC was accompanied by a reduction in MAPK phosphorylation in Ag-pulsed DC. Taken together, these studies identify a novel requirement for DC-intrinsic expression of NF-kappaB1 in regulating the MAPK pathway and governing the competence of DC to instruct Th2 cell differentiation.  相似文献   

6.
Chronic innocuous aeroallergen exposure attenuates CD4(+) T cell-mediated airways hyperresponsiveness in mice; however, the mechanism(s) remain unclear. We examined the role of airway mucosal dendritic cell (AMDC) subsets in this process using a multi-OVA aerosol-induced tolerance model in sensitized BALB/c mice. Aeroallergen capture by both CD11b(lo) and CD11b(hi) AMDC and the delivery of OVA to airway draining lymph nodes by CD8α(-) migratory dendritic cells (DC) were decreased in vivo (but not in vitro) when compared with sensitized but nontolerant mice. This was functionally significant, because in vivo proliferation of OVA-specific CD4(+) T cells was suppressed in airway draining lymph nodes of tolerized mice and could be restored by intranasal transfer of OVA-pulsed and activated exogenous DC, indicating a deficiency in Ag presentation by endogenous DC arriving from the airway mucosa. Bone marrow-derived DC Ag-presenting function was suppressed in multi-OVA tolerized mice, and allergen availability to airway APC populations was limited after multi-OVA exposure, as indicated by reduced OVA and dextran uptake by airway interstitial macrophages, with diffusion rather than localization of OVA across the airway mucosal surface. These data indicate that inhalation tolerance limits aeroallergen capture by AMDC subsets through a mechanism of bone marrow suppression of DC precursor function coupled with reduced Ag availability in vivo at the airway mucosa, resulting in limited Ag delivery to lymph nodes and hypoproliferation of allergen-specific CD4(+) T cells.  相似文献   

7.
Mast cell-associated TNF promotes dendritic cell migration   总被引:6,自引:0,他引:6  
Mast cells represent a potential source of TNF, a mediator which can enhance dendritic cell (DC) migration. Although the importance of mast cell-associated TNF in regulating DC migration in vivo is not clear, mast cells and mast cell-derived TNF can contribute to the expression of certain models of contact hypersensitivity (CHS). We found that CHS to FITC was significantly impaired in mast cell-deficient Kit(W-sh/W-sh) or TNF(-/)(-) mice. The reduced expression of CHS in Kit(W-sh/W-sh) mice was fully repaired by local transfer of wild-type bone marrow-derived cultured mast cells (BMCMCs), but was only partially repaired by transfer of TNF(-/)(-) BMCMCs. Thus, mast cells, and mast cell-derived TNF, were required for optimal expression of CHS to FITC. We found that the migration of FITC-bearing skin DCs into draining lymph nodes (LNs) 24 h after epicutaneous administration of FITC in naive mice was significantly reduced in mast cell-deficient or TNF(-/)(-) mice, but levels of DC migration in these mutant mice increased to greater than wild-type levels by 48 h after FITC sensitization. Mast cell-deficient or TNF(-/)(-) mice also exhibited significantly reduced migration of airway DCs to local LNs at 24 h after intranasal challenge with FITC-OVA. Migration of FITC-bearing DCs to LNs draining the skin or airways 24 h after sensitization was repaired in Kit(W-sh/W-sh) mice which had been engrafted with wild-type but not TNF(-/)(-) BMCMCs. Our findings indicate that mast cell-associated TNF can contribute significantly to the initial stages of FITC-induced migration of cutaneous or airway DCs.  相似文献   

8.
Previously, we reported that IL-10-producing mononuclear phagocytes increase in lungs of aged mice, causing impaired innate cytokine expression. Since dendritic cells (DCs) contribute to innate NK cell and adaptive T cell immunity, we tested the hypothesis that age-related IL-10 might influence DC function with effects on NK and T cell activation. The results showed that DC recruitment to sites of lung inflammation was normal in aged mice (>20 mo). However, IFN-gamma-producing NK cells in LPS-challenged lungs were decreased in aged as compared with young mice, which was associated with increased IL-10(+)CD11b(+)Gr-1(low)CD11c(-) cells consistent with mononuclear phagocytes. In vivo or in vitro blockade of IL-10 signaling restored IFN-gamma-producing NK cells. This restoration was reversed by IL-12 neutralization, indicating that IL-10 suppressed sources of IL-12 in aged mice. To probe DC function in adaptive immunity, we transferred young naive OVA-specific TCR transgenic T cells to old mice. Following challenge with OVA plus LPS, Ag presentation in the context of MHC-I and MHC-II occurred with similar kinetics and intensity in draining lymph nodes of young and old recipients as measured by proliferation. Despite this, aged hosts displayed impaired induction of IFN-gamma(+)CD4(+), but not IFN-gamma(+)CD8(+), effector T cells. Blockade of IL-10 signaling reversed age-associated defects. These studies indicate that the innate IL-12/IFN-gamma axis is not intrinsically defective in lungs of aged mice, but is rather suppressed by enhanced production of mononuclear phagocyte-derived IL-10. Our data identify a novel mechanism of age-associated immune deficiency.  相似文献   

9.
There is evidence that donor-derived dendritic cells (DC), particularly those at a precursor/immature stage, may play a role in the immune privilege of liver allografts. Underlying mechanisms are poorly understood. We have examined the influence of in vitro generated mouse liver-derived DC progenitors (DCp) on proliferative, cytotoxic, and Th1/Th2 cytokine responses induced in allogeneic T cells. Liver DCp, propagated in GM-CSF from C57B10 mice (H2b), induced only minimal proliferation, and weak cytotoxic responses in allogeneic (C3H; H2k) T cells compared with mature bone marrow (BM)-derived DC. Flow-cytometric analysis of intracellular cytokine staining revealed that mature BM DC, but not liver DCp, elicited CD4+ T cell production of IFN-gamma. Intracellular expression of IL-10 was very low in both BM DC- and liver DCp-stimulated CD4+ T cells. Only stimulation by liver DCp was associated with IL-10 secretion in primary MLR. Notably, these liver DCp cocultured with allogeneic T cells stained strongly for IL-10. Following local (s.c. ) injection in allogeneic recipients, both BM DC and liver DCp homed to T cell areas of draining lymph nodes and spleen, where they were readily detected by immunohistochemistry up to 2 wk postinjection. Liver DCp induced clusters of IL-10- and IL-4-secreting mononuclear cells, whereas Th2 cytokine-secreting cells were not detected in mice injected with mature BM DC. By contrast, comparatively high numbers of IFN-gamma+ cells were induced by BM DC. Modulation of Th2 cytokine production by donor-derived DCp may contribute to the comparative immune privilege of hepatic allografts.  相似文献   

10.
Recent studies have suggested a pivotal role for secondary lymphoid chemokine (SLC) in directing dendritic cell trafficking from peripheral to lymphoid tissues. As an extension of these studies, we examined the consequences of anti-SLC Ab treatment during Ag priming on T cell function in an inflammatory response. We used a model of T cell-mediated inflammation, contact hypersensitivity (CHS), where priming of the effector T cells is dependent upon epidermal dendritic cell, Langerhans cells, and migration from the hapten sensitization site in the skin to draining lymph nodes. A single injection of anti-SLC Ab given at the time of sensitization with FITC inhibited Langerhans cell migration into draining lymph nodes for at least 3 days. The CHS response to hapten challenge was inhibited by anti-SLC Ab treatment in a dose-dependent manner. Despite the inhibition of CHS, T cells producing IFN-gamma following in vitro stimulation with anti-CD3 mAb or with hapten-labeled cells were present in the skin-draining lymph nodes of mice treated with anti-SLC Ab during hapten sensitization. These T cells were unable, however, to passively transfer CHS to naive recipients. Animals treated with anti-SLC Ab during hapten sensitization were not tolerant to subsequent sensitization and challenge with the hapten. In addition, anti-SLC Ab did not inhibit CHS responses when given at the time of hapten challenge. These results indicate an important role for SLC during sensitization for CHS and suggest a strategy to circumvent functional T cell priming for inflammatory responses through administration of an Ab inhibiting dendritic cell trafficking.  相似文献   

11.
Dendritic cells (DC) are the professional APCs that initiate T cell immune responses. DC can develop from both myeloid and lymphoid progenitors. In the mouse, the CD8alpha(+) DC had been designated as "lymphoid" DC, and CD8alpha(-) DC as "myeloid" DC until recently when it was demonstrated that common myeloid progenitors can also give rise to CD8alpha(+) DC in bone marrow chimera mice. However, it is still not clear which committed myeloid lineages differentiate into CD8alpha(+) DC. Because monocytes can differentiate into DC in vivo, the simplest hypothesis is that the CD8alpha(+) DC can be derived from the monocyte/macrophage. In this study we show that cell clones, isolated from CD8alpha(+) DC lymphoma but with a monocytic phenotype (CD11c(low/-)D11b(high)CD8alpha(-)I-A(low)), can redifferentiate into CD8alpha(+) DC either when stimulated by LPS and CD40L or when they migrate into the lymphoid organs. Maturation of DC in vivo correlated with strong priming of allogeneic T cells. Moreover, the monocytes from cultured splenocytes or peritoneal exudates macrophages of wild-type mice are also capable of differentiating into CD11c(+)CD8alpha(+) DC after their migration into the draining lymph nodes. Our results suggest that monocytes can be direct precursors for CD11c(+)CD8alpha(+) DC in vivo. In addition, the monocyte clones described in this study may be valuable for studying the differentiation and function of CD8alpha(+) DC that mediate cross-presentation of Ag to CD8 T cells specific for cell-associate Ags.  相似文献   

12.
In the current study, we showed that in vivo administration of an anti-CD25 Ab (PC61) decreased the Th17 response in C57BL/6 mice immunized with the uveitogenic peptide interphotoreceptor retinoid-binding protein, while enhancing the autoreactive Th1 response. The depressed Th17 response was closely associated with decreased numbers of a splenic dendritic cell (DC) subset expressing CD11c(+)CD3(-)CD25(+) and decreased expansion of γδ T cells. We demonstrated that ablation of the CD25(+) DC subset accounted for the decreased activation and the expansion of γδ T cells, leading to decreased activation of IL-17(+) interphotoreceptor retinoid-binding protein-specific T cells. Our results show that an enhanced Th17 response in an autoimmune disease is associated with the appearance of a DC subset expressing CD25 and that treatment of mice with anti-CD25 Ab causes functional alterations in a number of immune cell types, namely DCs and γδ T cells, in addition to CD25(+)αβTCR(+) regulatory T cells.  相似文献   

13.
The cytokines secreted by pathogen-activated human dendritic cells (DC) are strongly regulated in vitro by histamine, a major component of mast cell granules, ultimately modulating the capacity of the DC to polarize naive T cells. Because DC and mast cells are located in close proximity in peripheral compartments, we hypothesized that mast cell products would influence the maturation of DC and hence the Th balance of an immune response in vivo. In this study, we show that specific mast cell degranulation stimuli, given s.c. in mice with Ag and adjuvant, produce effector T cells that proliferate to Ag but secrete dramatically reduced levels of IFN-gamma and increased amounts of IL-4 compared with control T cells primed in the absence of a mast cell stimulus. Immunization with Ag and adjuvant in the presence of a degranulation stimulus also resulted in the accumulation of DC in the draining lymph nodes that had reduced capacity to induce Ag-specific Th1 cells, in comparison with DC from mice lacking a degranulation stimulus. Therefore, by acting upon DC at sites of inflammation, mast cells play a critical role in determining the polarity of Ag-specific T cell responses in vivo.  相似文献   

14.
Mucosal tolerance prevents the body from eliciting productive immune responses against harmless Ags that enter the body via the mucosae, and is mediated by the induction of regulatory T cells that differentiate in the mucosa-draining lymph nodes (LN) under defined conditions of Ag presentation. In this study, we show that mice deficient in FcgammaRIIB failed to develop mucosal tolerance to OVA, and demonstrate in vitro and in vivo a critical role for this receptor in modulating the Ag-presenting capacity of dendritic cells (DC). In vitro it was shown that absence of FcgammaRIIB under tolerogenic conditions led to increased IgG-induced release of inflammatory cytokines such as MCP-1, TNF-alpha, and IL-6 by bone marrow-derived DC, and increased their expression of costimulatory molecules, resulting in an altered immunogenic T cell response associated with increased IL-2 and IFN-gamma secretion. In vivo we could show enhanced LN-DC activation and increased numbers of Ag-specific IFN-gamma-producing T cells when FcgammaRIIB(-/-) mice were treated with OVA via the nasal mucosa, inferring that DC modulation by FcgammaRIIB directed the phenotype of the T cell response. Adoptive transfer of CD4(+) T cells from the spleen of FcgammaRIIB(-/-) mice to naive acceptor mice demonstrated that OVA-responding T cells failed to differentiate into regulatory T cells, explaining the lack of tolerance in these mice. Our findings demonstrate that signaling via FcgammaRIIB on DC, initiated by local IgG in the mucosa-draining LN, down-regulates DC activation induced by nasally applied Ag, resulting in those defined conditions of Ag presentation that lead to Tr induction and tolerance.  相似文献   

15.
Altered frequency and function of peripheral invariant NKT (iNKT) cells have been implicated in the regulation of murine and human type 1a diabetes. To examine regulatory cells from the site of drainage of autoinflammatory tissue and autoantigenic T cell priming in diabetes, we directly cloned iNKT cells from human pancreatic draining lymph nodes (PLN). From 451 T cell clones from control and diabetic PLN, we derived 55 iNKT cells by two methods and analyzed function by cytokine secretion. iNKT cell clones isolated from control PLN secreted IL-4 and IFN-gamma upon TCR stimulation. For type 1a diabetic subjects, PLN iNKT cell clones from three samples secreted IFN-gamma and no IL-4. In a rare recent onset diabetic sample with islet-infiltrating CD4+ T cells, the phenotype of PLN iNKT cell clones was mixed. From normal and diabetic PLN, one-third of CD1d tetramer+-sorted T cell clones were reactive with CD1d transfectants or proliferated/secreted cytokine in response to alpha-galactosylceramide-pulsed PBMCs; tetramer-staining T cell clones from diabetic PLN did not secrete IL-4. This is the first report directly examining iNKT cells from lymph nodes draining the site of autoimmunological attack in humans; iNKT cells were altered in cytokine secretion as previously reported for circulating iNKT cells in human type 1a diabetes.  相似文献   

16.
We previously reported that cytokine gene transfer into weakly immunogenic tumor cells could enhance the generation of precursor cells of tumor-reactive T cells and subsequently augment antitumor efficacy of adoptive immunotherapy. We investigated whether such potent antitumor effector T cells could be generated from mice bearing poorly immunogenic tumors. In contrast to similarly modified weakly immunogenic tumors, MCA102 cells, which are chemically induced poorly immunogenic fibrosarcoma cells transfected with cDNA for IL-2, IL-4, IL-6, IFN-gamma, failed to augment the host immune reaction. Because priming of antitumor effector T cells in vivo requires two important signals provided by tumor-associated Ags and costimulatory molecules, these tumor cells were cotransfected with a B7-1 cDNA. Transfection of both IFN-gamma and B7-1 (MCA102/B7-1/IFN-gamma) resulted in regression of s.c. tumors, while tumor transfected with other combinations of cytokine and B7-1 showed progressive growth. Cotransfection of IFN-gamma and B7-1 into other poorly immunogenic tumor B16 and LLC cells also resulted in the regression of s.c. tumors. Cells derived from lymph nodes draining MCA102/B7-1/IFN-gamma tumors showed potent antitumor efficacy, eradicating established pulmonary metastases, but this effect was not seen with parental tumors. This mechanism of enhanced antitumor efficacy was further investigated, and T cells with down-regulated L-selectin expression, which constituted all the in vivo antitumor reactivity, were significantly increased in lymph nodes draining MCA102/B7-1/IFN-gamma tumors. These T cells developed into potent antitumor effector cells after in vitro activation with anti-CD3/IL-2. The strategy presented here may provide a basis for developing potent immunotherapy for human cancers.  相似文献   

17.
The notion that the mucosal immune system maintains a tolerogenic response to harmless Ags while continually being challenged with microbial products seems an enigma. The aim of this study was to unravel mechanisms that are involved in regulating the development of tolerance under constant microbial pressure. The tolerogenic response to Ags administered via the nasal mucosa is dependent on the organized lymphoid tissue of the cervical lymph nodes (LN). We show that cervical LN differentially express secretory leukoprotease inhibitor (SLPI) compared with peripheral LN. SLPI was expressed by dendritic cells (DCs) and because SLPI is known to suppress LPS responsiveness, it was hypothesized that its expression in mucosal DCs may be required to regulate cellular activation to microbial products. Indeed, compared with wild-type controls, bone marrow-derived DCs from SLPI(-/-) mice released more inflammatory cytokines and enhanced T cell proliferation after stimulation with low dose LPS. This increased sensitivity to LPS was accompanied by increased NF-kappaB p65 activation in SLPI(-/-) DCs. In vivo, nasal application of OVA with LPS to SLPI(-/-) mice resulted in enhanced DC activation in the cervical LN reflected by increased costimulatory molecule expression and release of inflammatory cytokines. This led to failure to maintain tolerance to nasal OVA application in the presence of low doses of LPS. We propose that expression of SLPI functions as a rheostat by controlling the level of bacterial stimuli that induce mucosal DC activation. As such, it regulates the quality of the ensuing Ag-specific immune response in the mucosa draining LN.  相似文献   

18.
CD8 T cells lacking effector activity have been recovered from lymphoid organs of mice and patients with progressing tumors. We explored the basis for lack of effector activity in tumor-bearing mice by evaluating Ag presentation and CD8 T cell function in lymphoid organs over the course of tumor outgrowth. Early after tumor injection, cross-presentation by bone marrow-derived APC was necessary for T cell activation, inducing proliferation and differentiation into IFN-gamma-producing, cytolytic effectors. At later stages of outgrowth, tumor metastasized to draining lymph nodes. Both cross- and direct presentation occurred, but T cell differentiation induced by either modality was incomplete (proliferation without cytokine production). T cells within tumor-infiltrated nodes differentiated appropriately if Ag was presented by activated, exogenous dendritic cells. Thus, activated T cells lacking effector function develop through incomplete differentiation in the lymph nodes of late-stage tumor-bearing mice, rather than through suppression of previously differentiated cells.  相似文献   

19.
The UV radiation in sunlight is the primary cause of skin cancer. UV is also immunosuppressive and numerous studies have shown that UV-induced immune suppression is a major risk factor for skin cancer induction. Previous studies demonstrated that dermal mast cells play a critical role in the induction of immune suppression. Mast cell-deficient mice are resistant to the immunosuppressive effects of UV radiation, and UV-induced immune suppression can be restored by injecting bone marrow-derived mast cells into the skin of mast cell- deficient mice. The exact process however, by which mast cells contribute to immune suppression, is not known. In this study, we show that one of the first steps in the induction of immune suppression is mast cell migration from the skin to the draining lymph nodes. UV exposure, in a dose-dependent manner, causes a significant increase in lymph node mast cell numbers. When GFP(+) skin was grafted onto mast cell-deficient mice, we found that GFP(+) mast cells preferentially migrated into the lymph nodes draining the skin. The mast cells migrated primarily to the B cell areas of the draining nodes. Mast cells express CXCR4(+) and UV exposure up-regulated the expression of its ligand CXCL12 by lymph node B cells. Treating UV-irradiated mice with a CXCR4 antagonist blocked mast cell migration and abrogated UV-induced immune suppression. Our findings indicate that UV-induced mast cell migration to draining lymph nodes, mediated by CXCR4 interacting with CXCL12, represents a key early step in UV-induced immune suppression.  相似文献   

20.
Murine polymicrobial sepsis is associated with a sustained reduction of dendritic cell (DC) numbers in lymphoid organs and with a dysfunction of DC that is considered to mediate the chronic susceptibility of post-septic mice to secondary infections. We investigated whether polymicrobial sepsis triggered an altered de novo formation and/or differentiation of DC in the bone marrow. BrdU labeling experiments indicated that polymicrobial sepsis did not affect the formation of splenic DC. DC that differentiated from bone marrow (bone marrow-derived DC [BMDC]) of post-septic mice released enhanced levels of IL-10 but did not show an altered phenotype in comparison with BMDC from sham mice. Adoptive transfer experiments of BMDC into naive mice revealed that BMDC from post-septic mice impaired Th1 priming but not Th cell expansion and suppressed the innate immune defense mechanisms against Pseudomonas bacteria in the lung. Accordingly, BMDC from post-septic mice inhibited the release of IFN-γ from NK cells that are critical for the protection against Pseudomonas. Additionally, sepsis was associated with a loss of resident DC in the bone marrow. Depletion of resident DC from bone marrow of sham mice led to the differentiation of BMDC that were impaired in Th1 priming similar to BMDC from post-septic mice. Thus, in response to polymicrobial sepsis, DC precursor cells in the bone marrow developed into regulatory DC that impaired Th1 priming and NK cell activity and mediated immunosuppression. The absence of resident DC in the bone marrow after sepsis might have contributed to the modulation of DC differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号