首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wild-type transforming growth factor α (TGFα) expression in lactotrope cells in the pituitary gland led to lactotrope-specific pituitary hyperplasia and adenomata. To indicate whether the EGF receptor is involved in this TGFα-mediated phenotype, we bred TGFα mice with mice expressing the cytoplasmic truncated-EGF receptor (EGFR-tr), which is dominant-negative in other models. These bitransgenic mice developed pituitary pathology despite expression of the dominant-negative receptor. To further characterize this observation, we generated two lineages of transgenic mice that overexpress mutant forms of TGFα: a processed soluble form (s TGFα) and a cytoplasmic-deleted form (TGFαΔC). While sTGFα expression in lactotrope cells failed to induce autocrine lactotrope hyperplasia, the pituitary became very enlarged due to proliferation of neighboring interstitial cells. In contrast, the TGFαΔC mice did not develop a phenotype, although the mRNA and protein were present in the pituitary and this form of TGFα was confirmed to be biologically active and targeted properly to the plasma membrane of cultured CHO cells. The results suggest that the cytoplasmic domain of TGFα is required for autocrine parenchymal tumor formation in the pituitary gland. This signal cannot be inhibited by the EGFR-tr. Conversely, the released form of TGFα appears to have primarily paracrine activity.  相似文献   

2.
Proteolytic events in the processing of secreted proteins in fungi.   总被引:6,自引:0,他引:6  
Secreted heterologous proteins have been found to be produced much less efficiently by fungi than secreted homologous ones. This could be due, at least in part, to proteolytic cleavage by site-specific endoproteases of the secretory pathway, similar to the yeast KEX2 protease and the mammalian dibasic endoproteinases found in secretory pathways. Mature secreted fungal proteins may be protected from such cleavage due to the absence of cleavable sites in exposed regions. A comparison of the dipeptide distributions of 33 secreted and 34 cytoplasmic proteins from fungal producers of extracellular enzymes indicated a significant bias for some doublets, including the basic dipeptides Lys-Arg, Arg-Arg and Arg-Lys which have also been demonstrated to be KEX2 substrates. Other combinations were also found to be rare in secreted proteins, which could indicate either a broader specificity of the considered endopeptidase, or the presence either in the secretory organelles or among the secreted proteins of additional proteases with different specificities. Experimental evidence that the Lys-Arg site is processed in Tolypocladium geodes was provided by cloning a synthetic prosequence upstream of a phleomycin resistance (Sh ble) gene and analyzing the N-terminus of the corresponding protein purified from the culture supernatant. This system also provides a tool for further studies of specific proteases of fungi.  相似文献   

3.
1. The proteolytic processing sites of human lysosomal aspartic protease cathepsin D at which the intermediate single-chain form was converted into the mature two-chain form were determined. 2. The two chains were isolated by reversed-phase HPLC in order to investigate the cleavage sites of the enzyme. 3. Protein sequencing of the heavy chain, which was presumed to be derived from the C-terminal side in the single-chain enzyme, gave an N-terminal Leu 105. In addition, it revealed that there were also minor sequences, which commenced with Gly 106 and Gly 107. 4. A small C-terminal peptide was isolated from the light chain, which had been digested with two kinds of exogenous proteases. Sequence determination of this peptide, which was characterized as a nonapeptide by mass spectrometry, suggested that the C-terminus of the light chain was Ser 98. 5. These results indicate that a Ser 98-Ala 99 bond and an Ala 104-Leu 105 bond are cleaved to release 6 amino acid residues between the two chains.  相似文献   

4.
The semaphorins are a large group of cell surface and secreted proteins implicated in axonal pathfinding. Here we show that the secreted mouse semaphorin D (SemD) is synthesized as an inactive precursor (proSemD) and becomes repulsive for sensory and sympathetic neurites upon proteolytic cleavage. ProSemD processing can be blocked completely by an inhibitor selective for furin-like endoproteases or mutagenesis of three conserved dibasic cleavage sites. Its C-terminal pro-peptide contains a processing signal that is essential for SemD to acquire its full repulsive activity. SemD processing is regulated during the embryonic development of the mouse and determines the magnitude of its repulsive activity. Similarly to SemD, the secreted semaphorins SemA and SemE display repulsive properties that are regulated by processing. Our data suggest that differential proteolytic processing determines the repulsive potency of secreted semaphorins and implicate proteolysis as an important regulatory mechanism in axonal pathfinding.  相似文献   

5.
Ciliates of the genus Euplotes rely on the autocrine (self) and paracrine (non-self) activities of their water-borne protein pheromones to control the two fundamental phenomena of their life cycle, i.e. vegetative (mitotic) growth and sex manifested as cell union in mating pairs. We observed that cell aging determines the synthesis of increasing concentrations of pheromones that are oxidized at the level of methionine residues which are more exposed on the molecular surface. The oxidized form of the E. raikovi pheromone Er-1 was purified and its interactions with its source cells were shown no longer to be of autocrine type directed to promote cell growth, but changed to interactions of the paracrine type directed to induce cell unions in mating pairs of the selfing type (i.e. involving genetically identical cells). These pairs generate viable offspring, like pairs formed between genetically different cells. It was therefore concluded that aging cells may paradoxically gain beneficial effects from the synthesis of oxidized forms of their pheromones. By undergoing mating in response to the interactions with these forms, they can re-initiate a new life cycle and, in fact, rejuvenate.  相似文献   

6.
We have already reported that reactive oxygen species (ROS) promote rat ascites hepatoma cell invasion beneath mesentery-derived mesothelial cell monolayer. To investigate the mechanism for this, we examined the involvement of motility factors, particularly hepatocyte growth factor (HGF). Rat ascites hepatoma cell line of AH109A expressed HGF and c-Met mRNAs. Treatment with ROS augmented amounts of HGF mRNA in AH109A and HGF concentration in the medium. ROS also induced HGF gene expression in mesothelial cells. Exogenously added HGF enhanced invasive activity of AH109A cells, but exerted no effect on proliferation. AH109A cells pretreated with ROS showed an increased invasive activity, which was cancelled by simultaneous pretreatment with anti-HGF antibody. These results suggest that the invasive activity of AH109A is mediated by the autocrine and paracrine pathways of HGF, and ROS potentiate invasive activity by inducing gene expression of HGF in AH109A and mesothelial cells.  相似文献   

7.
The fibroblast growth factor-1 (FGF-1) mitogenic signal transduction pathway is not well characterized, and evidence indicates that FGF-1 binding to and activation of cell-surface receptors is not solely sufficient for a full mitogenic response. Although initiation of the phosphorylation signaling cascades are likely important in FGF-1-induced mitogenic signaling, there appear to be additional signaling requirements. In this study, we demonstrate that FGF-1 internalization and subsequent processing correlates with the mitogenic potential of the growth factor on NIH 3T3 cells. Using site-directed mutants of FGF-1 and inhibitors of the endocytic and degradative pathways, we provide evidence for growth factor internalization and exposure to an acidic environment as necessary components of FGF-1-induced mitogenesis. In addition, a protease-sensitive event(s) appears critical for a complete mitogenic response to FGF-1, whereas, this protease sensitivity was not detected under the same conditions for serum-stimulated mitogenesis. Therefore, proteolytic modification of internalized FGF-1 may result in the activation of additional, intracellular signaling events.  相似文献   

8.
We have stably expressed the cDNA encoding the 165 amino-acid long form of human vascular endothelial growth factor (VEGF) in BHK-21 cells. VEGF was partially purified from the conditioned medium of transfected cells using heparin-sepharose affinity chromatography. The partially purified VEGF was mitogenic for various types of endothelial cells and inhibited the binding of pure [125I]VEGF to its receptors. Western blot analysis, using anti-VEGF antibodies, revealed a 47 kDa VEGF homodimer in the partially purified VEGF fraction. Preincubation of the transfected cells with the N-glycosylation inhibitor tunicamycin resulted in the conversion of the 47 kDa VEGF homodimer into a smaller, deglycosylated form of 42 kDa. Partially purified preparations of the deglycosylated VEGF displayed a mitogenic activity that was similar to that of the glycosylated form and efficiently inhibited the binding of native [125I]VEGF to the VEGF receptors of bovine aortic arch derived endothelial cells.  相似文献   

9.
It is well established in many mammalian species, including the horse that normal testicular function is dependent upon a functional hypothalamic-pituitary-testicular (HPT) axis, which involves classic feedback mechanisms. The major HPT hormones involved in the stallion are gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), estrogens (Es) and inhibin (INH). Although prolactin (PRL) fluctuates with season in the stallion and both PRL and thyroid hormone (TH) affect reproduction in other male species, their effects on stallion reproduction have not been elucidated. Growth hormone (GH) in the stallion may be involved in sperm motility, production and secretion of insulin-like growth factor-1 (IGF-1) and LH-induced testosterone release. The action of these hormones and the products involved for normal spermatogenesis require cell to cell communication within the testis. The somatic cell types, Leydig, Sertoli and peritubular myoid cells, all support germ cell development, maturation and release into the seminiferous tubule lumen. The cell to cell crosstalk involves an intricate network of paracrine-autocrine systems that support the endocrine input to modulate cell function. In other male species, researchers have demonstrated the reproductive effects of such paracrine-autocrine factors as IGF-1, transferrin, androgens, estrogens, inhibin, insulin like peptide 3 (INSL3), beta-endorphin and oxytocin. The specific nature and relative contribution of these various factors on testicular function in fertile and subfertile stallions are under investigation. This review summarizes current information regarding the nature of the multiple endocrine-paracrine-autocrine systems that may be necessary for normal testicular function in the stallion.  相似文献   

10.
Membrane secretory component (mSC) mediates the transcellular movement of polymeric IgA from the sinusoidal to the bile canalicular surface of rat hepatocytes. Prior to or concomitant with arrival at the bile canalicular membrane, mSC is cleaved, producing a soluble proteolytic fragment (fSC) which is released into the bile. Conversion of mSC to fSC occurs at the cell surface of cultured rat hepatocytes (Musil, L. S., and Baenziger, J. U. (1987) J. Cell Biol. 104, 1725-1733), suggesting that vectorial release of fSC into bile in vivo may reflect localization of a mSC-specific protease to bile canalicular membranes. We have established a reconstituted system to examine the process of specific cleavage of mSC to yield fSC and to characterize the protease activity responsible. A membrane fraction highly enriched for endocytic vesicles was found to contain approximately 90% of the [35S]Cys-mSC from metabolically labeled rat liver slices but only 5% of the cellular protein. No cleavage activity was present in these vesicles. Highly enriched bile canalicular membranes were able to mediate cleavage of metabolically labeled mSC to a fragment indistinguishable from authentic fSC. In the absence of nonionic detergent, cleavage was dependent on the presence of polyethylene glycol, presumably to mediate fusion of mSC-enriched membranes with bile canalicular membranes. Following solubilization with nonionic detergent, cleavage was no longer dependent on the addition of polyethylene glycol. Cleavage of mSC was not observed with either intact or detergent-solubilized sinusoidal, microsomal, or lysosomal membranes. We have thus identified a proteolytic activity associated with bile canalicular membranes which has the properties of a membrane protein and is likely to be responsible for production of fSC in vivo. Its highly restricted localization to the bile canalicular membrane would account for the vectorial release of fSC into the bile.  相似文献   

11.
《Reproductive biology》2022,22(1):100580
The present study aims to examine the role of kisspeptin (KP), FSH, and its receptor (FSHR), and their interrelationships in the control of basic human ovarian granulosa cells functions. We investigated: (1) the ability of granulosa cells to produce KP and FSHR, (2) the role of KP in the control of ovarian functions, and (3) the ability of KP to affect FSHR and to modify the FSH action on ovarian functions. The effects of KP alone (0, 10 and 100 ng/mL); or of KP (10 and 100 ng/mL) in combination with FSH (10 ng/mL) on cultured human granulosa cells were assessed. Viability, markers of proliferation (PCNA and cyclin B1) and apoptosis (bax and caspase 3), as well as accumulation of KP, FSHR, and steroid hormones, IGF-I, oxytocin (OT), and prostaglandin E2 (PGE2) release were analyzed by the Trypan blue exclusion test, quantitative immunocytochemistry, and ELISA. KP given at a low dose (10 ng/mL) stimulated viability, proliferation, inhibited apoptosis, promoted the release of progesterone (P4), estradiol (E2), IGF-I, OT, and PGE2, the accumulation of FSHR, but not testosterone (T) release. KP given at a high dose (100 ng/mL) had the opposite, inhibitory effect. FSH stimulated cell viability, proliferation and inhibited apoptosis, promoted P4, T, E2, IGF-I, and OT, but not PGE2 release. Furthermore, KP at a low dose promoted the stimulatory effect of FSH on viability, proliferation, P4, E2, and OT release, promoted its inhibitory action on apoptosis, but did not modify its action on T, IGF-I, and PGE2 output. KP at a high dose prevented and inverted FSH action. These results suggest an intra-ovarian production and a functional interrelationship between KP and FSH/FSHR in direct regulation of basic ovarian cell functions (viability, proliferation, apoptosis, and hormones release). The capability of KP to stimulate FSHR, the ability of FSH to promote ovarian functions, as well as the similarity of KP (10 ng/mL) and FSH action on granulosa cells’ viability, proliferation, apoptosis, steroid hormones, IGF-I, OT, and PGE2 release, suggest that FSH influence these cells could be mediated by KP. Moreover, the capability of KP (100 ng/mL) to decrease FSHR accumulation, basal and FSH-induced ovarian parameters, suggest that KP can suppress some ovarian granulosa cell functions via down-regulation of FSHR. These observations propose the existence of the FSH-KP axis up-regulating human ovarian cell functions.  相似文献   

12.
Angiopoietin-like protein 4 (ANGPTL4) has been associated with a variety of diseases. It is known as an endogenous inhibitor of lipoprotein lipase (LPL), and it modulates lipid deposition and energy homeostasis. ANGPTL4 is cleaved by unidentified protease(s), and the biological importance of this cleavage event is not fully understood with respect to its inhibitory effect on LPL activity. Here, we show that ANGPTL4 appears on the cell surface as the full-length form, where it can be released by heparin treatment in culture and in vivo. ANGPTL4 protein is then proteolytically cleaved into several forms by proprotein convertases (PCs). Several PCs, including furin, PC5/6, paired basic amino acid-cleaving enzyme 4, and PC7, are able to cleave human ANGPTL4 at a consensus site. PC-specific inhibitors block the processing of ANGPTL4. Blockage of ANGPTL4 cleavage reduces its inhibitory effects on LPL activity and decreases its ability to raise plasma triglyceride levels. In summary, the cleavage of ANGPTL4 by these PCs modulates its inhibitory effect on LPL activity.  相似文献   

13.
14.
Insulin-like growth factor (IGF) binding protein-related protein-1 (IGFBP-rP1) was previously identified as tumor-derived adhesion factor (TAF) secreted from human bladder carcinoma cells. It exhibits growth-stimulatory activity in synergy with insulin or IGFs. In the present study, we found that IGFBP-rP1 was proteolytically cleaved to a two-chain form. The cleavage sequence suggested that a trypsin-like serine proteinase may be responsible for the processing. The cleavage of IGFBP-rP1 led to an almost complete loss of both insulin/IGF-1-binding activity and insulin/IGF-1-dependent growth-stimulatory activity. On the other hand, the cell attachment activity of IGFBP-rP1 was markedly increased by the proteolytic processing. Syndecan-1 was thought to be a cell surface receptor for both intact and cleaved IGFBP-rP1 forms. Although the proteolytic cleavage of IGFBP-rP1 decreased its heparin-binding activity, the cleaved form could bind syndecan-1 efficiently. Thus the proteolytic processing of IGFBP-rP1 seems to modulate its insulin/IGF-dependent and -independent biological functions.  相似文献   

15.
The present study was undertaken to evaluate in vitro the importance of tissue factor in the mitogenic effect of factor VIIa for embryonic fibroblasts. For that purpose, embryonic fibroblasts were isolated from either wild-type or transgenic mice showing a single inactivation of the tissue factor gene or expressing a truncated form (lacking the cytosolic domain) of this protein. Factor VIIa stimulated in a dose-dependent manner the growth of the 3 types of fibroblasts, thus showing that TF is not involved in the mitogenic activity of factor VIIa. The mitogenic activity of factor VIIa disappeared in serum immunopurified in factor X and was almost totally inhibited by DX9065, a selective factor Xa inhibitor, showing that this effect of factor VIIa occurred via factor Xa generated during the incubation period. Hirudin did not show any significant effect on factor VIIa-induced fibroblast proliferation, thus showing that the effect observed for factor VIIa was selectively mediated by factor Xa and was not due to thrombin formation. Our results therefore represent the first evidence for the possible importance of factor Xa in the mitogenic effect of factor VIIa and show the negligible role of tissue factor in this process.  相似文献   

16.
This report describes the use of an antibody directed against the carboxyl terminus of the insulin receptor beta subunit to assess the fate of the insulin receptor protein over the time course of insulin-induced receptor down-regulation. The insulin receptor beta subunit is lost from the cellular membranes of insulin-treated 3T3-C2 fibroblasts with a time course superimposable with the insulin-induced loss of cellular insulin binding activity. Concomitant with the time-dependent loss of the intact beta subunit from the membranes, a 61,000-Da fragment of the insulin receptor beta subunit accumulates in the cytosol of the cells in a time-dependent manner. The insulin-induced loss of the intact beta subunit from the cellular membranes is inhibited by cycloheximide. Chloroquine and the thiol protease inhibitors leupeptin and E-64 inhibit the insulin-induced loss of the intact beta subunit from the membranes and induce an accumulation of the intact subunit in the membranes. However, in the presence of leupeptin, E-64, or chloroquine, the insulin-induced loss of insulin binding activity occurs normally. These data indicate that down-regulation results in the loss of the intact beta subunit from the cellular membranes with the production of a fragment of the beta subunit in the cytosol. The protease responsible for the generation of the fragment is a thiol protease which requires acidic conditions. Since the insulin-induced proteolysis of the beta subunit can be totally inhibited under conditions where the insulin-induced loss of insulin binding activity proceeds normally, the proteolysis of the beta subunit is a process which is separate and distinguishable from the insulin-induced loss of insulin binding activity.  相似文献   

17.
The aim of this review is to explore the idea that the glycosaminoglycan sugar heparan sulfate (HS), richly concentrated on the plasma membrane of all animal cells studied so far and a major component of extracellular matrices, is by virtue of its ability to modulate protein gradients and signal transduction, the master regulator of stem cell fate (and thus wound healing). Moreover, the interaction between HS and members of the TGF-beta superfamily is emerging as a central tenet for stem cells. The potential significance of this interaction is best understood by examining both how HS modulates ligand interactions and stability, and how it maintains protein gradients with varying degrees of specificity. Importantly, HS also regulates the activity of numerous antagonists, thus underscoring its importance as a primary regulator of stem cell fate decisions.  相似文献   

18.

Background  

Pertussis toxin (PT) is an exotoxin virulence factor produced by Bordetella pertussis, the causative agent of whooping cough. PT consists of an active subunit (S1) that ADP-ribosylates the alpha subunit of several mammalian G proteins, and a B oligomer (S2–S5) that binds glycoconjugate receptors on cells. PT appears to enter cells by endocytosis, and retrograde transport through the Golgi apparatus may be important for its cytotoxicity. A previous study demonstrated that proteolytic processing of S1 occurs after PT enters mammalian cells. We sought to determine whether this proteolytic processing of S1 is necessary for PT cytotoxicity.  相似文献   

19.
The hyaline layer is an apically located extraembryonic matrix, which blankets the sea urchin embryo. Using gelatin substrate gel zymography, we have identified a number of gelatin-cleaving activities within the hyaline layer and defined a precursor-product processing pathway which leads to the appearance of 40- and 38-kDa activities coincident with the loss of a 50-kDa species. Proteolytic processing of the precursor required the presence of both CaCl2 and NaCl at concentrations similar to those found in sea water. The cleavage activities utilized both sea urchin and rat tail tendon gelatins as substrates but demonstrated a species-specific cleavage activity towards sea urchin collagen. The gelatin-cleaving activities were refractory to inhibition by 1,10-phenanthroline but were inhibited by benzamidine. This latter result defines the serine protease nature of the cleavage activities. Both the 40- and 38-kDa activities were found to comigrate with gelatin-cleaving activities present in the sea urchin embryo.  相似文献   

20.
The soluble proteins of the eggs of the coleopteran insect Anthonomus grandis Boheman, the cotton boll weevil, consist almost entirely of two vitellin types with Mrs of 160,000 and 47,000. We sequenced their N-terminal ends and one internal cyanogen bromide fragment of the large vitellin and compared these sequences with the deduced amino acid sequence from the vitellogenin gene. The results suggest that both the boll weevil vitellin proteins are products of the proteolytic cleavage of a single precursor protein. The smaller 47,000 M vitellin protein is derived from the N-terminal portion of the precursor adjacent to an 18 amino acid signal peptide. The cleavage site between the large and small vitellins at amino acid 362 is adjacent to a pentapeptide sequence containing two pairs of arginine residues. Comparison of the boll weevil sequences with limited known sequences from the single 180,000 Mr honey bee protein show that the honey bee vitellin N-terminal exhibits sequence homology to the N-terminal of the 47,000 Mr boll weevil vitellin. Treatment of the vitellins with an N-glycosidase results in a decrease in molecular weight of both proteins, from 47,000 to 39,000 and from 160,000 to 145,000, indicating that about 10–15% of the molecular weight of each vitellin consists of N-linked carbohydrate. The molecular weight of the deglycosylated large vitellin is smaller than that predicted from the gene sequence, indicating possible further proteolytic processing at the C-terminal of that protein. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号