首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Congenital heart defects (CHDs) are found in 75% of patients with DiGeorge/velocardiofacial (DG/VCF) syndromes with deletion 22q11.2 (del22q11). The purpose of this study was to analyse clinical features and, particularly, types and subtypes of CHDs associated with del22q11 in our series of patients and in those reported in other studies. All patients with CHD and del22q11 present major or minor clinical features of DG/VCF syndrome. Many children, particularly in the neonatal age, have only a "subtle" phenotype, so that accurate phenotypical evaluation is mandatory for selecting patients with CHD at risk for del22q11. Conotruncal cardiac defects are the most common CHDs in patients with DG/VCF syndrome, but other defects can also occur. Peculiar anatomical subtypes are found in patients with del22q11. They are frequently complex, consisting in malalignment with deficiency of the infundibular septum and anomalies of the aortic arch and pulmonary arteries.  相似文献   

2.
DiGeorge syndrome (DGS), a developmental field defect of the third and fourth pharyngeal pouches, is characterized by aplasia or hypoplasia of the thymus and parathyroid glands and by conotruncal cardiac malformations. Cytogenetic studies support the presence of a DGS critical region in band 22q11. In the present study, we report the results of clinical, cytogenetic, and molecular studies of 14 patients with DGS. Chromosome analysis, utilizing high-resolution banding techniques, detected interstitial deletions in five probands and was inconclusive for a deletion in three probands. The remaining six patients had normal karyotypes. In contrast, molecular analysis detected DNA deletions in all 14 probands. Two of 10 loci tested, D22S75 and D22S259, are deleted in all 14 patients. A third locus, D22S66, is deleted in the eight DGS probands tested. Physical mapping using somatic cell hybrids places D22S66 between D22S75 and D22S259, suggesting that it should be deleted in the remaining six cases. Parent-of-origin studies were performed in five families. Four probands failed to inherit a maternal allele, and one failed to inherit a paternal allele. On the basis of these families, and of six maternally and five paternally derived unbalanced-translocation DGS probands in the literature, parent of origin or imprinting does not appear to play an important role in the pathogenesis of DGS. Deletion of the same three loci in all 14 DGS probands begins to delineate the region of chromosome 22 critical for DGS and confirms the hypothesis that submicroscopic deletions of 22q11 are etiologic in the vast majority of cases.  相似文献   

3.
Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  相似文献   

4.
Velo-cardio-facial syndrome (VCFS) is a relatively common developmental disorder characterized by craniofacial anomalies and conotruncal heart defects. Many VCFS patients have hemizygous deletions for a part of 22q11, suggesting that haploinsufficiency in this region is responsible for its etiology. Because most cases of VCFS are sporadic, portions of 22q11 may be prone to rearrangement. To understand the molecular basis for chromosomal deletions, we defined the extent of the deletion, by genotyping 151 VCFS patients and performing haplotype analysis on 105, using 15 consecutive polymorphic markers in 22q11. We found that 83% had a deletion and >90% of these had a similar approximately 3 Mb deletion, suggesting that sequences flanking the common breakpoints are susceptible to rearrangement. We found no correlation between the presence or size of the deletion and the phenotype. To further define the chromosomal breakpoints among the VCFS patients, we developed somatic hybrid cell lines from a set of VCFS patients. An 11-kb resolution physical map of a 1,080-kb region that includes deletion breakpoints was constructed, incorporating genes and expressed sequence tags (ESTs) isolated by the hybridization selection method. The ordered markers were used to examine the two separated copies of chromosome 22 in the somatic hybrid cell lines. In some cases, we were able to map the chromosome breakpoints within a single cosmid. A 480-kb critical region for VCFS has been delineated, including the genes for GSCL, CTP, CLTD, HIRA, and TMVCF, as well as a number of novel ordered ESTs.  相似文献   

5.
It is well established that DiGeorge syndrome (DGS) may be associated with monosomy of 22q11-pter. More recently, DNA probes have been used to detect hemizygosity for this region in patients with no visible karyotypic abnormality. However, DGS has also been described in cases where the cytogenetic abnormality does not involve 22q11; for instance, four cases of 10p- have been reported. In this study we have prospectively analyzed patients, by using DNA markers from 22q11, to assess the frequency of 22q11 rearrangements in DGS. Twenty-one of 22 cases had demonstrable hemizygosity for 22q11. Cytogenetic analysis had identified interstitial deletion in 6 of 16 cases tested; in 6 other cases no karyotype was available. When these results are combined with those from our previous studies, 33 of 35 DGS patients had chromosome 22q11 deletions detectable by DNA probes.  相似文献   

6.
CATCH 22 syndromes, which include DiGeorge syndrome and Velocardiofacial syndrome, are the most common cause of congenital heart disease which involve microdeletion of 22q11. Using a strategy including EST searching, PCR amplification and 5'-RACE, we have cloned a 1487 bp cDNA fragment from human heart cDNA library. The cloned GNB1L cDNA encodes a G-protein beta-subunit-like polypeptide, and the GNB1L gene is located in the critical region for DiGeorge syndrome. A comparison of GNB1L cDNA sequence with corresponding genomic DNA sequence revealed that this gene consists of seven exons and spans an approximately 60 kb genomic region. Northern blot analysis revealed GNB1L is highly expressed in the heart.  相似文献   

7.
DiGeorge syndrome is a human developmental field defect with the pathological features of an abnormality of embryogenesis at 4 to 6 weeks of gestation. Cytogenetic analyses of patients have revealed a number of instances of monosomy 22q11-pter in this condition. We have analyzed 52 DNA markers that map to 22q11-pter and have found 27 that are deleted in DiGeorge syndrome patients with known monosomy for part of this region and that are duplicated in patients with the der22 syndrome. The set of clones mapping to the DiGeorge region was further assigned to a proximal or a distal location within the deletion.  相似文献   

8.
Funke B  Pandita RK  Morrow BE 《Genomics》2001,73(3):264-271
Three congenital disorders, cat-eye syndrome (CES), der(22) syndrome, and velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), result from tetrasomy, trisomy, and monosomy, respectively, of part of 22q11. They share a 1.5-Mb region of overlap, which contains 24 known genes. Although the region has been sequenced and extensively analyzed, it is expected to contain additional genes, which have thus far escaped identification. To understand completely the molecular etiology of VCFS/DGS, der(22) syndrome, and CES, it is essential to isolate all genes in the interval. We have identified and characterized a novel human gene, located within the 1.5-Mb region deleted in VCFS/DGS, trisomic in der(22) syndrome and tetrasomic in CES. The deduced amino acid sequence of the human gene and its mouse homologue contain several WD40 repeats, but lack homology to known proteins. We termed this gene WDR14 (WD40 repeat-containing gene deleted in VCFS). It is expressed in a variety of human and mouse adult and fetal tissues with substantial expression levels in the adult thymus, an organ hypoplastic in VCFS/DGS.  相似文献   

9.
10.
Summary DiGeorge syndrome (DGS) is a human developmental defect of the structures derived from the third and fourth pharyngeal pouches. It apparently arises due to deletion of 22q11. We describe a strategy for the isolation of DNA probes for this region. A deleted chromosome 22, which includes 22q11, was flow-sorted from a lymphoblastoid cell line of a patient with cat eye syndrome and used as the source of DNA. A DNA library was constructed from this chromosome by cloning into the EcoR1 site of the vector Lambda gt10. Inserts were amplified by PCR and mapped using a somatic cell hybrid panel of this region. Out of 32 probes, 14 were mapped to 22q11. These probes were further sublocalised within the region by dosage analysis of DGS patients, and by the use of two new hybrid cell lines which we have produced from DGS patients. One of these lines (7939B662) contains the altered human chromosome segregated from its normal homologue. This chromosome 22 contains an interstitial deletion in 22q11, and will be useful for localising further probes to the DGS region.  相似文献   

11.
The gene encoding the human mitochondrial citrate transporter designated SLC20A3 was mapped to chromosome 22 by analyzing its segregation in a panel of human-hamster somatic cell hybrids. This assignment was confirmed by fluorescence in situ hybridization to metaphase chromosomes, and the gene was further localized to band 22q11.21. The gene is located in a critical region associated with allelic losses in a variety of clinical syndromes, including DiGeorge syndrome, velo-cardio-facial syndrome and a subtype of schizophrenia. Received: 20 November 1995 / Revised: 4 January 1996  相似文献   

12.
A Drosophila-related expressed sequence tag (DRES) with sequence similarity to the peanut gene has previously been localized to human chromosome 22q11. We have isolated the cDNA corresponding to this DRES and show that it is a novel member of the family of septin genes, which encode proteins with GTPase activity thought to interact during cytokinesis. The predicted protein has P-loop nucleotide binding and GTPase motifs. The gene, which we call PNUTL1, maps to the region of 22q11.2 frequently deleted in DiGeorge and velo-cardio-facial syndromes and is particularly highly expressed in the brain. The mouse homologue, Pnutl1, maps to MMU16 adding to the growing number of genes from the DiGeorge syndrome region that map to this chromosome.  相似文献   

13.
Familial benign polycythemia (FBP) (OMIM 263400) is a rare autosomal recessive condition characterized by erythrocytosis, normal leukocyte and platelet counts, normal uric acid level, and usually increased erythropoietin production. There is a high incidence of this disorder in Chuvashia (Russian Federation), probably due to a founder effect. In an attempt to locate the gene responsible for this disorder, we have carried out linkage studies in 12 Chuvash families, with 35 affected and 32 unaffected members. Linkage to the erythropoietin and erythropoietin receptor loci was excluded, and the FBP gene was assigned to the region of chromosome 11q23 between D11S4142 and D11S1356, with a maximal lod score of 6.61.  相似文献   

14.
15.
Lund J  Chen F  Hua A  Roe B  Budarf M  Emanuel BS  Reeves RH 《Genomics》2000,63(3):374-383
Mouse genomic DNA sequence extending 634 kb on proximal mouse chromosome 16 was compared to the corresponding human sequence from chromosome 22q11.2. Haploinsufficiency for this region results in velocardiofacial syndrome (VCFS) in humans. The mouse region is rearranged into three conserved blocks relative to human, but gene content and position are highly conserved within these blocks. Examination of the boundaries of one of these blocks suggested that the evolutionary chromosomal rearrangement occurred in the mouse lineage, resulting in inactivation of the mouse orthologue of ZNF74. Sequence analysis identified 21 genes and 15 ESTs. These include 2 novel genes, Srec2 and Cals2, and previously undescribed splice variants of several other genes. Exon discovery was carried out using GRAIL2, MZEF, or comparative analysis across 491 kb of conserved mouse and human sequence. Sequence comparison was highly effective, identifying every gene and nearly every exon without the high frequency of false-positive predictions seen when algorithmic methods were used alone. In combination, these procedures identified every gene with no false-positive predictions. Comparative sequence analysis also revealed regions of extensive conservation among noncoding sequences, accounting for 6% of the sequence. A library of such sequences has been established to form a resource for generalized studies of regulatory and structural elements.  相似文献   

16.
Albumin and alpha-fetoprotein are structurally related serum proteins, having a similar gene structure and, conceivably, a common evolutionary origin. To test their relative arrangement in the human genome, the serum albumin and alpha-fetoprotein genes were mapped by in situ hybridization of cloned human albumin or alpha-fetoprotein cDNA to human mitotic chromosome preparations. Analysis of cells hybridized with the serum albumin probe showed that 39% of cells exhibited grains on the proximal portion of the long arm of chromosome 4 (bands q11-22), with these grains comprising 30% of all labeled sites throughout these mitoses. Similarly, in cells hybridized with the alpha-fetoprotein probe, 39% of cells were observed to contain silver grains on 4q11-22, these grains constituting 20% of all labeled sites in these cells. These results demonstrate chromosomal localization and linkage of the serum albumin and alpha-fetoprotein genes within bands q11-22 of the long arm of human chromosome 4.  相似文献   

17.
A genomic cosmid library was constructed from a Chinese hamster/human hybrid cell containing human intact chromosome 22 as its only human component. Of 1000 cosmids with inserts derived from human chromosome 22, 191 were tested for restriction fragment length polymorphisms (RFLPs). As a result, 64 clones detected RFLPs, including five variable number of tandem repeats systems. Of the remaining 127 cosmids, 111 detected a single copy sequence on human chromosome 22. Five somatic cell hybrids allowed us to assign all of the 64 polymorphic cosmids and 44 non-polymorphic cosmids to four different regions of human chromosome 22. In two patients with DiGeorge syndrome, one of the cosmids that had been sublocalized to 22pter-q11 detected hemizygosity. These 108 cosmid markers regionally assigned to human chromosome 22 should be useful for the construction of long-range physical maps and the identification of genetic alterations on the chromosome.  相似文献   

18.
19.
Seckel syndrome (MIM 210600) is an autosomal recessive disorder of low birth weight, severe microcephaly, and dysmorphic facial appearance with receding forehead, prominent nose, and micrognathia. We have performed a genomic screen in two consanguineous families of Pakistani origin and found that the disorder segregates with markers between loci D3S1316 and D3S3710, which map to chromosome 3q22.1-q24. Analysis using HOMOZ/MAPMAKER gave a maximum LOD score of 8.72. All five affected individuals were homozygous for the same allele, for two adjacent polymorphic markers within the region segregating with the disease, narrowing the region to 12 cM.  相似文献   

20.
The 22q11 deletion syndrome (22q11DS; DiGeorge/velo-cardio-facial syndrome) primarily affects the structures comprising the pharyngeal arches and pouches resulting in arch artery, cardiac, parathyroid, thymus, palatal and craniofacial defects. Tbx1 haploinsufficiency is thought to account for the main structural anomalies observed in the 22q11DS. The Df1 deleted mouse provides a model for 22q11DS, the deletion reflecting Tbx1 haploinsufficiency in the context of the deletion of 21 adjacent genes. We examined the expression of genes in Df1 embryos at embryonic day (E) 10.5, a stage when the arch-artery phenotype is fully penetrant. Our aims were threefold, with our primary aim to identify differentially regulated genes. Second, we asked whether any of the genes hemizygous in Df1 were dosage compensated to wild type levels, and third we investigated whether genes immediately adjacent to the deletion were dysregulated secondary to a position effect. Utilisation of oligonulceotide arrays allowed us to achieve our aims with 9 out of 12 Df1 deleted genes passing the stringent statistical filtering applied. Several genes involved in vasculogenesis and cardiogenesis were validated by real time quantitative PCR (RTQPCR), including Connexin 45, a gene required for normal vascular development, and Dnajb9 a gene implicated in microvascular differentiation. There was no evidence of any dosage compensation of deleted genes, suggesting this phenomenon is rare, and no dysregulation of genes mapping immediately adjacent to the deletion was detected. However Crkl, another gene implicated in the 22q11DS phenotype, was found to be downregulated by microarray and RTQPCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号