首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the mechanism of the inhibitory action of phorbol 12,13-dibutyrate (PDBu), one of the typical protein kinase C (PKC) activators, in in vitro smooth muscle strips and in isolated smooth muscle cells of the opossum internal anal sphincter (IAS). The inhibitory action of PDBu on IAS smooth muscle (observed in the presence of guanethidine + atropine) was partly attenuated by tetrodotoxin, suggesting that a part of the inhibitory action of PDBu is via the nonadrenergic, noncholinergic neurons. A major part of the action of PDBu in IAS smooth muscle was, however, via its direct action at the smooth muscle cells, accompanied by a decrease in free intracellular Ca(2+) concentration ([Ca(2+)](i)) and inhibition of PKC translocation. PDBu-induced IAS smooth muscle relaxation was unaffected by agents that block Ca(2+) mobilization and Na+-K+-ATPase. The PDBu-induced fall in basal IAS smooth muscle tone and [Ca(2+)](i) resembled that induced by the Ca(2+) channel blocker nifedipine and were reversed specifically by the Ca(2+) channel activator BAY K 8644. We speculate that a major component of the relaxant action of PDBu in IAS smooth muscle is caused by the inhibition of Ca(2+) influx and of PKC translocation to the membrane. The specific role of PKC downregulation and other factors in the phorbol ester-mediated fall in basal IAS smooth muscle tone remain to be determined.  相似文献   

2.
Bile secretion is regulated by different signaling transduction pathways including protein kinase C (PKC). However, the role of different PKC isoforms for bile formation is still controversial. This study investigates the effects of PKC isoform selective activators and inhibitors on PKC translocation, bile secretion, bile acid uptake, and subcellular transporter localization in rat liver, isolated rat hepatocytes and in HepG2 cells. In rat liver activation of Ca(2+)-dependent cPKCalpha and Ca(2+)-independent PKCepsilon by phorbol 12-myristate 13-acetate (PMA, 10nmol/liter) is associated with their translocation to the plasma membrane. PMA also induced translocation of the cloned rat PKCepsilon fused to a yellow fluorescent protein (YFP), which was transfected into HepG2 cells. In the perfused liver, PMA induced marked cholestasis. The PKC inhibitors G?6850 (1 micromol/liter) and G?6976 (0.2 micromol/liter), a selective inhibitor of Ca(2+)-dependent PKC isoforms, diminished the PMA effect by 50 and 60%, respectively. Thymeleatoxin (Ttx,) a selective activator of Ca(2+)-dependent cPKCs, did not translocate rat PKCepsilon-YFP transfected in HepG2 cells. However, Ttx (0.5-10 nmol/liter) induced cholestasis similar to PMA and led to a retrieval of Bsep from the canalicular membrane in rat liver while taurocholate-uptake in isolated hepatocytes was not affected. G?6976 completely blocked the cholestatic effect of Ttx but had no effect on tauroursodeoxycholate-induced choleresis. The data identify Ca(2+)-dependent PKC isoforms as inducers of cholestasis. This is mainly due to inhibition of taurocholate excretion involving transporter retrieval from the canalicular membrane.  相似文献   

3.
Stimulation of (1-3)-beta-glucan receptors results in Ca(2+) influx through receptor-operated channels in alveolar macrophages (AMs), but the mechanism(s) regulating Ca(2+) influx is still undefined. In this study we investigated the role of protein kinase C (PKC) regulation of Ca(2+) influx in the NR8383 AM cell line using the particulate (1-3)-beta-glucan receptor agonist zymosan. PKC inhibition with calphostin C (CC) or bisindolymaleimide I (BSM) significantly reduced zymosan-induced Ca(2+) influx, whereas activation of PKC with phorbol-12-myristate 13-acetate (PMA) or 1, 2-dioctanoyl-sn-glycerol (DOG) mimicked zymosan, inducing a concentration-dependent Ca(2+) influx. This influx was dependent on extracellular Ca(2+) and inhibited by the receptor-operated Ca(2+) channel blocker SK&F96365, indicating that zymosan and PKC activate Ca(2+) influx through a similar pathway. NR8383 AMs expressed one new PKC isoform (delta) and two atypical PKC isoforms (iota and lambda), but conventional PKC isoforms were not present. Stimulation with zymosan resulted in a translocation of PKC-delta from the cytosol to the membrane fraction. Furthermore, inhibition of protein tyrosine kinases (PTKs) with genistein prevented zymosan-stimulated Ca(2+) influx and PKC-delta translocation. These results suggest that PKC-delta plays a critical role in regulating (1-3)-beta-glucan receptor activated Ca(2+) influx in NR8383 AMs and PKC-delta translocation is possibly dependent on PTK activity.  相似文献   

4.
PKC and the intracellular calcium signal are two well-known intracellular signaling pathways implicated in the induction of mast cell exocytosis. Both signals are modified by the presence or absence of HCO(3)(-) ions in the external medium. In this work, we studied the regulation of the exocytotic process by PKC isozymes and its relationship with HCO(3)(-) ions and PKC modulation of the calcium entry. The calcium entry, induced by thapsigargin and further addition of calcium, was inhibited by PMA, a PKC activator, and enhanced by 500 nM GF109203X, which inhibits Ca(2+)-independent PKC isoforms. PMA inhibition of the Ca(2+) entry was reverted by 500 and 50 nM GF109203X, which inhibit Ca(2+)-independent and Ca(2+)-dependent isoforms, respectively, and G?6976, a specific inhibitor of Ca(2+)-dependent PKCs. Thus, activation of Ca(2+)-dependent and Ca(2+)-independent PKC isoforms inhibit Ca(2+) entry in rat mast cells, either in a HCO(3)(-)-buffered or a HCO(3)(-)-free medium. PMA, GF109203X, G?6976 and rottlerin, a specific inhibitor of PKC delta, were also used to study the role of PKC isoforms in the regulation of exocytosis induced by thapsigargin, ionophore A23187 and PMA. The results demonstrate that Ca(2+)-dependent PKC isoforms inhibit exocytosis in a HCO(3)(-)-dependent way. Moreover, Ca(2+)-independent PKC delta was the main isoform implicated in promotion of Ca(2+)-dependent mast cell exocytosis in the presence or absence of HCO(3)(-). The role of PKC isoforms in the regulation of mast cell exocytosis depends on the stimulus and on the presence or absence of HCO(3)(-) ions in the medium, but it is independent of PKC modulation of the Ca(2+) entry.  相似文献   

5.
Regulation of muscle cell Ca(2+) metabolism by 1, 25-dihydroxy-vitamin D(3) [1,25(OH)(2)D(3)] is mediated by the classic nuclear mechanism and a fast, nongenomic mode of action that activates signal transduction pathways. The role of individual protein kinase C (PKC) isoforms in the regulation of intracellular Ca(2+) levels ([Ca(2+)](i)) by the hormone was investigated in cultured proliferating (myoblasts) and differentiated (myotubes) chick skeletal muscle cells. 1,25(OH)(2)D(3) (10(-9) M) induced a rapid (30- to 60-s) and sustained (>5-min) increase in [Ca(2+)](i) which was markedly higher in myotubes than in myoblasts. The effect was suppressed by the PKC inhibitor calphostin C. In differentiated cells, PKC activity increased in the particulate fraction and decreased in cytosol to a greater extent than in proliferating cells after 5-min treatment with 1,25(OH)(2)D(3). By Western blot analysis, these changes were correlated to translocation of the PKC alpha isoform from cytosol to the particulate fraction, which was more pronounced in myotubes than in myoblasts. Specific inhibition of PKC alpha activity using antibodies against this isoform decreased the 1, 25(OH)(2)D(3)-induced [Ca(2+)](i) sustained response associated with Ca(2+) influx through voltage-dependent calcium channels. Neomycin, a phospholipase C (PLC) inhibitor, blocked its effects on [Ca(2+)](i), PKC activity, and translocation of PKC alpha. Exposure of myotubes to 1,2-dioleyl-rac-glycerol (1,2-diolein), also increased [Ca(2+)](i), PKC activity, and the amount of PKC alpha associated with the particulate fraction. Changes in [Ca(2+)](i) induced by diolein were inhibited by calphostin C and nifedipine. The results indicate that PKC alpha activation via PLC-catalyzed phosphoinositide hydrolysis is part of the mechanism by which 1, 25(OH)(2)D(3) regulates muscle intracellular Ca(2+) through modulation of the Ca(2+) influx pathway of the Ca(2+) response to the sterol.  相似文献   

6.
It is well established that pituitary adenylate cyclase-activating polypeptide (PACAP) can stimulate catecholamine biosynthesis and secretion in adrenal chromaffin cells. Recent studies from this laboratory demonstrated that PACAP pretreatment inhibits nicotine (NIC)-induced intracellular Ca(2+) transients and catecholamine secretion in porcine adrenal chromaffin cells. Mechanistically, this effect is mediated by protein kinase C (PKC), and based on indirect evidence, is thought to primarily target voltage-gated Ca(2+) channels. The present study used whole-cell patch-clamp analysis to test this possibility more directly in rat chromaffin cells. Consistent with the porcine data, pretreatment with PACAP or with phorbol ester [phorbol myristate acetate (PMA)] significantly suppressed NIC-induced intracellular Ca(2+) transients and catecholamine secretion in rat chromaffin cells. Exposure to PACAP and PMA significantly reduced peak Ca(2+) current in rat cells. The effects of both PACAP and PMA on Ca(2+) current could be blocked by treating cells with the PKC inhibitor staurosporine. Exposure to selective channel blockers demonstrated that rat chromaffin cells contain L-, N- and P/Q-type Ca(2+) channels. PACAP pretreatment significantly reduced Ca(2+) current gated through all three channel subtypes. These data suggest that PACAP can negatively modulate NIC-induced catecholamine secretion in both porcine and rat adrenal chromaffin cells.  相似文献   

7.
8.
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.  相似文献   

9.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

10.
ANG II constricts descending vasa recta (DVR) through Ca(2+) signaling in pericytes. We examined the role of PKC DVR pericytes isolated from the rat renal outer medulla. The PKC blocker staurosporine (10 microM) eliminated ANG II (10 nM)-induced vasoconstriction, inhibited pericyte cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) elevation, and blocked Mn(2+) influx into the cytoplasm. Activation of PKC by either 1,2-dioctanoyl-sn-glycerol (10 microM) or phorbol 12,13-dibutyrate (PDBu; 1 microM) induced both vasoconstriction and pericyte [Ca(2+)](cyt) elevation. Diltiazem (10 microM) blocked the ability of PDBu to increase pericyte [Ca(2+)](cyt) and enhance Mn(2+) influx. Both ANG II- and PDBu-induced PKC stimulated DVR generation of reactive oxygen species (ROS), measured by oxidation of dihydroethidium (DHE). The effect of ANG II was only significant when ANG II AT(2) receptors were blocked with PD-123319 (10 nM). PDBu augmentation of DHE oxidation was blocked by either TEMPOL (1 mM) or diphenylene iodonium (10 microM). We conclude that ANG II and PKC activation increases DVR pericyte [Ca(2+)](cyt), divalent ion conductance into the cytoplasm, and ROS generation.  相似文献   

11.
Cross-linking of receptor bound IgE antibodies by multivalent antigen (DNP8-BSA) on PB-3c cells leads to an increase of cytosolic calcium ((Ca2+)i). Active tumor promoting phorbol esters and teleocidin which specifically activate the phospholipid Ca2+-sensitive protein kinase (PKC), inhibited the antigen-mediated rise in (Ca2+)i and induced a time and dose-dependent translocation of cytosolic PKC to membranes of the PB-3c cells as determined by enzyme activity or immunoblotting using a polyclonal anti-PKC antibody. This TPA concentration did not affect the subcellular distribution of PKC, although 1 nM of 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited to 50% the antigen-mediated increase in (Ca2+)i. The concentration of TPA required to induce a half-maximal subcellular redistribution of immunodetectable PKC activity was an order of magnitude greater than the half-maximal dose required to inhibit the antigen-mediated increase in (Ca2+)i. These data demonstrate that the TPA-dependent activation of PKC is not directly coupled to its translocation to membranes.  相似文献   

12.
Based on the results from the use of selective inhibitors and activators, active protein kinase A, protein tyrosine kinase, and protein kinase C (PKC) isoforms decreased the adhesion of larval Galleria mellonella hemocytes to glass slides. The protein kinase A inhibitor at all concentrations increased granular cell adhesion only whereas protein tyrosine kinase elevated both granular and plasmatocyte attachment at the lowest concentration. Active, Ca(2+)- and lipid-dependent PKC isoforms limited plasmatocyte and granular cell adhesion whereas PKC that was inhibited by selected compounds (with differed modes of PKC inhibition) enhanced hemocyte attachment. The granular cells were more sensitive to the PKC inhibitors than were plasmatocytes. Phospholipase C and its diacylglyceride product were necessary to reduce hemocyte adhesion and maintain PKC activity. Extracellular Ca(2+), possibly transported through L-channels, was required for plasmatocyte attachment. In contrast, lowering the levels of cytosolic Ca(2+) was associated with decreased PKC activity and was required for hemocyte adhesion.  相似文献   

13.
The chloride conductance (G(Cl,swell)) that participates in the regulatory volume decrease process triggered by osmotic swelling in HeLa cells was impaired by removal of extracellular Ca(2+), depletion of intracellular Ca(2+) stores with thapsigargin, or by preloading the cells with BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Furthermore, overnight exposure to the phorbol ester tetradecanoyl phorbol acetate and acute incubation with inhibitors of the conventional protein kinase C (PKC) isoforms bisindolylmaleimide I and G?6976 inhibited G(Cl,swell). Treatment of HeLa cells with U73122, a phospholipase C inhibitor, also prevented G(Cl,swell). Hypotonicity induced selective PKC alpha accumulation in the membrane/cytoskeleton fraction in fractionation experiments and translocation of a green fluorescent protein-PKC alpha fusion protein to the plasma membrane of transiently transfected HeLa cells. To further explore the role of PKCs in hypotonicity-induced G(Cl,swell), HeLa clones stably expressing either a kinase-dead dominant negative variant of the Ca(2+)-dependent PKC isoform alpha (PKC alpha K386R) or of the atypical PKC isoform zeta (PKCzeta K275W) were generated. G(Cl,swell) was significantly reduced in HeLa cells expressing the dominant negative PKC alpha mutant but remained unaltered in cells expressing dominant negative PKCzeta. These findings strongly implicate PKC alpha as a critical regulatory element that is required for efficient regulatory volume decrease in HeLa cells.  相似文献   

14.
We examined which isoforms of protein kinase C (PKC) may be involved in the regulation of cationic amino acid transporter-1 (CAT-1) transport activity in cultured pulmonary artery endothelial cells (PAEC). An activator of classical and novel isoforms of PKC, phorbol 12-myristate-13-acetate (PMA; 100 nM), inhibited CAT-1-mediated l-arginine transport in PAEC after a 1-h treatment and activated l-arginine uptake after an 18-h treatment of cells. These changes in l-arginine transport were not related to the changes in the expression of the CAT-1 transporter. The inhibitory effect of PMA on l-arginine transport was accompanied by a translocation of PKCalpha (a classical PKC isoform) from the cytosol to the membrane fraction, whereas the activating effect of PMA on l-arginine transport was accompanied by full depletion of the expression of PKCalpha in PAEC. A selective activator of Ca(2+)-dependent classical isoforms of PKC, thymeleatoxin (Thy; 100 nM; 1-h and 18-h treatments), induced the same changes in l-arginine uptake and PKCalpha translocation and depletion as PMA. The effects of PMA and Thy on l-arginine transport in PAEC were attenuated by a selective inhibitor of classical PKC isoforms Go 6976 (1 micro M). Phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl (PIP; 5 micro M), which activates novel PKC isoforms, did not affect l-arginine transport in PAEC after 1-h and 18-h treatment of cells. PIP (5 micro M; 1 h) induced the translocation of PKCepsilon (a novel PKC isoform) from the cytosolic to the particulate fraction and did not affect the translocation of PKCalpha. These results demonstrate that classical isoforms of PKC are involved in the regulation of CAT-1 transport activity in PAEC. We suggest that translocation of PKCalpha to the plasma membrane induces phosphorylation of the CAT-1 transporter, which leads to inhibition of its transport activity in PAEC. In contrast, depletion of PKCalpha after long-term treatment with PMA or Thy promotes dephosphorylation of the CAT-1 transporter and activation of its activity.  相似文献   

15.
We have shown before that Na(+)/K(+)-ATPase acts as a signal transducer, through protein-protein interactions, in addition to being an ion pump. Interaction of ouabain with the enzyme of the intact cells causes activation of Src, transactivation of EGFR, and activation of the Ras/ERK1/2 cascade. To determine the role of protein kinase C (PKC) in this pathway, neonatal rat cardiac myocytes were exposed to ouabain and assayed for translocation/activation of PKC from cytosolic to particulate fractions. Ouabain caused rapid and sustained stimulation of this translocation, evidenced by the assay of Ca(2+)-dependent and Ca(2+)-independent PKC activities and by the immunoblot analysis of the alpha, delta, and epsilon isoforms of PKC. Dose-dependent stimulation of PKC translocation by ouabain (1-100 microm) was accompanied by no more than 50% inhibition of Na(+)/K(+)-ATPase and doubling of [Ca(2+)](i), changes that do not affect myocyte viability and are known to be associated with positive inotropic, but not toxic, effects of ouabain in rat cardiac ventricles. Ouabain-induced activation of ERK1/2 was blocked by PKC inhibitors calphostin C and chelerythrine. An inhibitor of phosphoinositide turnover in myocytes also antagonized ouabain-induced PKC translocation and ERK1/2 activation. These and previous findings indicate that ouabain-induced activation of PKC and Ras, each linked to Na(+)/K(+)-ATPase through Src/EGFR, are both required for the activation of ERK1/2. Ouabain-induced PKC translocation and ERK1/2 activation were dependent on the presence of Ca(2+) in the medium, suggesting that the signal-transducing and ion-pumping functions of Na(+)/K(+)-ATPase cooperate in activation of these protein kinases and the resulting regulation of contractility and growth of the cardiac myocyte.  相似文献   

16.
The IL-8 (or CXCL8) chemokine receptors, CXCR1 and CXCR2, activate protein kinase C (PKC) to mediate leukocyte functions. To investigate the roles of different PKC isoforms in CXCL8 receptor activation and regulation, human mononuclear phagocytes were treated with CXCL8 or CXCL1 (melanoma growth-stimulating activity), which is specific for CXCR2. Plasma membrane association was used as a measure of PKC activation. Both receptors induced time-dependent association of PKCalpha, -beta1, and -beta2 to the membrane, but only CXCR1 activated PKCepsilon. CXCL8 also failed to activate PKCepsilon in RBL-2H3 cells stably expressing CXCR2. DeltaCXCR2, a cytoplasmic tail deletion mutant of CXCR2 that is resistant to internalization, activated PKCepsilon as well as CXCR1. Expression of the PKCepsilon inhibitor peptide epsilonV1 in RBL-2H3 cells blocked PKCepsilon translocation and inhibited receptor-mediated exocytosis, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization. epsilonV1 also inhibited CXCR1-, CCR5-, and DeltaCXCR2-mediated cross-regulatory signals for GTPase activity, Ca(2+) mobilization, and internalization. Peritoneal macrophages from PKCepsilon-deficient mice (PKCepsilon(-/-)) also showed decreased CCR5-mediated cross-desensitization of G protein activation and Ca(2+) mobilization. Taken together, the results indicate that CXCR1 and CCR5 activate PKCepsilon to mediate cross-inhibitory signals. Inhibition or deletion of PKCepsilon decreases receptor-induced exocytosis and cross-regulatory signals, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization, suggesting that cross-regulation is a Ca(2+)-independent process. Because DeltaCXCR2, but not CXCR2, activates PKCepsilon and cross-desensitizes CCR5, the data further suggest that signal duration leading to activation of novel PKC may modulate receptor-mediated cross-inhibitory signals.  相似文献   

17.
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.  相似文献   

18.
Phorbol dibutyrate (PDBu) induced the formation of podosome-like structures together with partial disassembly of actin stress fibers in A7r5 smooth muscle cells. These podosomes contained alpha-actinin, F-actin, and vinculin and exhibit a tubular, column-like structure arising perpendicularly from the bottom of PDBu-treated cells. The conventional protein kinase C (PKC) antagonist, GO6976, inhibited PDBu-induced cytoskeletal remodeling at 0.1 microM, whereas the novel PKC antagonist, rottlerin, was ineffective at 10 microM. PDBu induced the translocation of the conventional PKC-alpha but not the novel PKC-delta to the sites of podosome formation in A7r5 cells. Although partial disassembly of actin stress fibers was observed in both Y-27632- and PDBu-treated cells, focal adhesions were much reduced in number and size only in Y-27632-treated cells. Furthermore, PDBu restored focal adhesions in Y-27632-treated cells. Live video fluorescence microscopy of alpha-actinin GFP revealed a lag phase of about 20 min prior to the rapid formation and dynamic reorganization of podosomes during PDBu treatment. These findings suggest that conventional PKCs mediate PDBu-induced formation of dynamic podosome-like structures in A7r5 cells, and Rho-kinase is unlikely to be the underlying mechanism. The podosome columns could represent molecular scaffolds where PKC-alpha phosphorylates regulatory proteins necessary for Ca(2+) sensitization in smooth muscle cells.  相似文献   

19.
Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase.  相似文献   

20.
We investigated the effects of the vasoconstrictor angiotensin (Ang) II on the whole cell inward rectifier K(+) (Kir) current enzymatically isolated from small-diameter (<100 microm) coronary arterial smooth muscle cells (CASMCs). Ang II inhibited the Kir current in a dose-dependent manner (half inhibition value: 154 nM). Pretreatment with phospholipase C inhibitor and protein kinase C (PKC) inhibitors prevented the Ang II-induced inhibition of the Kir current. The PKC activator reduced the Kir currents. The inhibitory effect of Ang II was reduced by intracellular and extracellular Ca(2+) free condition and by G?6976, which inhibits Ca(2+)-dependent PKC isoforms alpha and beta. However, the inhibitory effect of Ang II was unaffected by a peptide that selectively inhibits the translocation of the epsilon isoform of PKC. Western blot analysis confirmed that PKCalpha, and not PKCbeta, was expressed in small-diameter CASMCs. The Ang II type 1 (AT(1))-receptor antagonist CV-11974 prevented the Ang II-induced inhibition of the Kir current. From these results, we conclude that Ang II inhibits Kir channels through AT(1) receptors by the activation of PKCalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号