首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The superoxide (O2-)-forming NADPH oxidase of resting macrophages can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). O2- production requires the cooperation of membrane-associated and cytosolic components. The membrane component can be solubilized by octyl glucoside yielding a highly active oxidase preparation. High performance gel filtration of the solubilized oxidase on Superose 12 in the presence of 40 mM octyl glucoside leads to the total loss of enzymatic activity. This can be restored in previously inactive eluate fractions by "reconstitution" with N-ethylmaleimide or heat (60 degrees C)-inactivated total solubilized membrane. Oxidase activity, that becomes evident upon reconstitution, is eluted from Superose 12 with molecules in the Mr range of 300,000-71,000. The material with reconstitutive capacity is completely dissociated from the oxidase, eluting with molecules in the Mr range of 71,000-11,000. The Superose 12 elution profile of the material responsible for reconstitution coincides with that of membrane-derived phospholipid. Also, the reconstitutive capacity of total solubilized membrane and that of the Mr 71,000-11,000 region of the Superose eluate are recovered in a chloroform extract prepared by the method of Bligh and Dyer. It is concluded that loss of oxidase activity by gel filtration at a high octyl glucoside concentration is the consequence of delipidation. NADPH oxidase activity, revealed by reconstitution of Superose 12 fractions with exogenous phospholipid, correlates closely with the elution profile of cytochrome b559. Reconstitution of activity of delipidated oxidase can also be achieved with natural non-macrophage phospholipids and with synthetic phospholipids. Reconstitution of NADPH oxidase activity by lipids is governed by the following rules: (a) phospholipids are effective; lysophospholipids and neutral lipids are not; (b) phospholipids with polar heads represented by choline, ethanolamine, and serine, as well as cardiolipin, are effective; phosphatidylinositol is much less active; (c) phospholipids with unsaturated fatty acid residues are capable of reconstitution while saturated acyl residues do not confer activity; this specificity appears not to be related to the transition temperature of the phospholipids.  相似文献   

2.
Sodium dodecyl sulfate (SDS) elicits the production of superoxide (O2-) by a cell-free system represented by sonically disrupted guinea pig peritoneal macrophages. O2- generation requires NADPH and a heat-sensitive cellular component, is proportional to the amount of macrophage protein, and exhibits a pH optimum of 6.5-7. The kinetic parameters of the SDS-stimulated enzyme are: Km (+/- S.E.) = 0.0367 +/- 0.003 mM NADPH and Vmax (+/- S.E.) = 73.46 +/- 9.09 nmol O2-/mg of protein/min. O2- production is dependent on the cooperation between a particulate subcellular component sedimentable at 48,000 X g and a cytosolic factor present in the 48,000 X g supernatant. The activity of both components is destroyed by heating at 80 degrees C. Pretreatment of intact macrophages with phorbol myristate acetate results in the partial removal of the requirement for cytosolic factor; SDS is now capable of activating the isolated 48,000 X g pellet. Among a large number of anionic, cationic, and nonionic detergents tested, only the anionic detergents SDS and sodium dodecyl sulfonate are capable of eliciting O2- production in the cell-free system, SDS being the more potent stimulant. It is proposed that the structural requirements that make these compounds capable of activating the O2- forming NADPH oxidase in a cell-free system are the presence of an anionic polar head and a long hydrophobic alkyl tail. We suggest that sodium salts of long chain unsaturated fatty acids that were found by us to be capable of stimulating O2- production in a cell-free system (Bromberg, Y., and Pick, E. (1984) Cell. Immunol. 88, 213-221) owe their activity to the fact that they function as anionic detergents.  相似文献   

3.
The NADPH-dependent superoxide production induced by sodium dodecyl sulfate (SDS) in the sonicates of unstimulated pig neutrophils required both membrane fraction and two components of cytosol fraction. The potency of the cytosol fraction in the activation of the superoxide production could be reconstituted dose dependently by mixing two protein components with relative molecular masses of 300 kDa and 50 kDa. Another low-molecular-mass component (1.3 kDa) could substitute the 50-kDa component. In the cell-free system consisting of the 300- and 50-kDa components and the membrane fraction, the superoxide production was markedly enhanced by FAD with a required concentration for half-maximal effect of 0.16 microM and inhibited by divalent cations such as Ca2+, Ba2+, Co2+, Zn2+ and Mn2+ and not Mg2+. ATP was not necessary for the activation, indicating that protein kinases such as protein kinase C are not involved in the SDS-dependent activation of NADPH oxidase. The NADPH oxidase activated by SDS in the cell-free system was recovered in the membrane fraction, and the superoxide formation by the SDS-activated membrane exhibited a Km value for NADPH of 46 microM and optimum pH at 7.0. The formation did not require the addition of SDS and FAD to the reaction mixture and was scarcely inhibited by the divalent cations.  相似文献   

4.
The effect of sodium dodecyl sulfate (SDS) on purified tobacco leaf PPO (PPO II) was investigated at various pHs and temperatures. SDS increased the activity of PPO II due to the formation of SDS-PPO II complex, leading to conformational changes, thus making access to active center easier. The relationship between the activity and the molar ratio of SDS-PPO II to PPO II showed that the critical point reached a plateau of activity at the molar ratio of about 1.2. The pH had a significant effect on interaction between SDS and PPO II, as compared to PPO II. The optimum catalytic temperature of the complex rose by 10 degrees C, suggesting that stabilization of the structure had been improved by the formation of complex.  相似文献   

5.
The leukocyte NADPH oxidase is an enzyme present in phagocytes and B lymphocytes that when activated catalyzes the production of O-2 from oxygen at the expense of NADPH. A correlation between the activation of the oxidase and the phosphorylation of p47(PHOX), a cytosolic oxidase component, is well recognized in whole cells, and direct evidence for a relationship between the phosphorylation of this oxidase component and the activation of the oxidase has been obtained in a number of cell-free systems containing neutrophil membrane and cytosol. Using superoxide dismutase-inhibitable cytochrome c reduction to quantify O-2 production, we now show that p47(PHOX) phosphorylated by protein kinase C activates the NADPH oxidase not only in a cell-free system containing neutrophil membrane and cytosol, but also in a system in which the cytosol is replaced by the recombinant proteins p67(PHOX), Rac2, and phosphorylated p47(PHOX), suggesting that neutrophil plasma membrane plus those three cytosolic proteins are both necessary and sufficient for oxidase activation. In both the cytosol-containing and recombinant cell-free systems, however, activation by SDS yielded greater rates of O-2 production than activation by protein kinase C-phosphorylated p47(PHOX), indicating that a system that employs protein kinase C-phosphorylated p47(PHOX) as the sole activating agent, although more physiological than the SDS-activated system, is nevertheless incomplete.  相似文献   

6.
GTP and GTP-gamma-S enhanced several-fold the NADPH-dependent superoxide production induced by sodium dodecyl sulfate in a cell-free system of pig neutrophils consisting of the membrane fraction and two cytosolic fractions separated by gel filtration. The enhanced activity was decreased by the addition of GDP in a dose-dependent manner, but 70% of the activity in the absence of GTP remained even at 1 mM GDP. Only one cytosol fraction besides the membrane fraction was required for the activation in the presence of GTP. The cytosol fraction was analyzed by chromatography on 2',5'-ADP agarose and two components responsible for the GTP-dependent and independent activation were separated. These results suggest that at least two pathways are available for the activation of superoxide production in the cell-free system of pig neutrophils.  相似文献   

7.
S Umeki 《Life sciences》1990,46(16):1111-1118
Kinetics of activation of the NADPH oxidase in a fully soluble cell-free system from phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system in which Mg2+ and sodium dodecyl sulfate, an anionic detergent required for the activation of NADPH oxidase are contained, cytosol prepared from PMA-stimulated neutrophils failed to activate PMA-stimulated neutrophil oxidase. However, cytosol prepared from resting (control) neutrophils was capable of activating PMA-stimulated neutrophil oxidase in a cell-free system in which its Km for NADPH was almost similar to that of control neutrophil oxidase. Cytosol from PMA-stimulated neutrophils could not activate control neutrophil oxidase, although it did not contain any inhibitors of NADPH oxidase activation. These results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted, and that the affinity for NADPH of PMA-stimulated neutrophil oxidase may be the same as that of control neutrophil oxidase.  相似文献   

8.
Anionic amphiphiles such as long chain unsaturated fatty acids and SDS were shown to activate the superoxide (O2-) producing NADPH oxidase in a cell-free system derived from sonically disrupted phagocytes (macrophages and granulocytes). O2- production required the cooperation of a membrane associated component sedimenting at 48,000 X g (pi) and a cytosolic factor (sigma). The purpose of the present investigation was to find out whether components pi and sigma were also present in non-phagocytic cells that do not produce O2- when stimulated. It was found that the 48,000 X g pellets of guinea pig lymph node and thymus cell sonicates contained significant amounts of component pi, as shown by their ability to support SDS-elicited NADPH-dependent O2- production when supplemented with macrophage cytosol. Lymph node and thymus pi could be extracted from the membrane by 30 mM octyl glucoside, just as its macrophage-derived equivalent. Combining lymph node and thymus 48,000 X g pellet with autologous cytosol did not yield an active enzyme preparation. Also, cytosol from lymph node and thymus cells could not cooperate with macrophage 48,000 X g pellet, indicating that component sigma was lacking in lymphoid cells. Neither pi nor sigma could be detected in guinea pig kidney, the mouse myeloma cell line MOPC 315 and the canine cell line Cf2Th. The 48,000 X g pellet of all nonphagocytic cells examined contained a b-cytochrome that resembled, by its spectral characteristics, the cytochrome b559 thought to be characteristic of phagocytes. In macrophages, cytochrome b559 represented 80% of b-cytochrome content of the 48,000 X g pellet, whereas in non-phagocytic cells, the equivalent material represented only 50 to 60%. There was no correlation between the presence and quantity of the cytochrome b559-like chromophore in the 48,000 X g pellet of a particular cell type and its ability to cooperate with macrophage cytosol in SDS-elicited O2- production.  相似文献   

9.
The superoxide-generating enzyme of human neutrophils, NADPH oxidase, is converted from an inactive to an active form upon stimulation of the neutrophil. This activation process was examined using a recently developed cell-free system in which dormant oxidase is activated by arachidonic acid in the presence of a soluble factor from the neutrophil (Curnutte, J. T. (1985) J. Clin. Invest. 75, 1740-1743). NADPH oxidase from unstimulated human neutrophils was detected only in the membrane fraction. The soluble activation factor was localized entirely to the cytosolic fraction and exhibited two peaks of activity when partially purified under nondenaturing conditions: a major peak with a molecular mass of approximately 250 kDa and a variable minor peak with a mass of approximately 40 kDa. Both forms activated NADPH oxidase in a similar manner and did not exhibit synergy when combined. The cytosolic factor is not protein kinase C (or another kinase) as both peaks of factor activity could be resolved from the protein kinase C peak and neither required calcium or ATP to activate the oxidase. Activation of NADPH oxidase did require the simultaneous presence of the membrane fraction, the cytosolic factor, arachidonic acid, and magnesium. Following activation, however, only the membrane fraction was then required for O2- production. Cytosolic factor levels were normal in five patients with either X-linked or autosomal recessive cytochrome b-negative chronic granulomatous disease. In contrast, the membrane fractions from each failed to generate O2-, indicating that the defects in these two genetic forms of chronic granulomatous disease reside either in the oxidase itself or in a membrane component required for activation.  相似文献   

10.
We reported earlier that monocytes and macrophages from patients with type I Gaucher disease have a decreased capacity to generate superoxide anion (O(2)(-)) on stimulation with opsonized S. aureus or formyl-methionyl-leucyl-phenylalanine. In this study, various forms of the cell-free assay system were used to probe the hypothesis that glucocerebroside (GC) accumulating in Gaucher patients' phagocytes may interfere with the activation of NADPH oxidase. Xanthine/xanthine oxidase assay was applied to explore the possibility that GC may scavenge O(2)(-). We found that addition of GC to the crude, semirecombinant or fully purified cell-free systems inhibited activation of NADPH oxidase in a concentration-dependent manner. The inhibitory effect of GC could be overcome by increased concentrations of p47(phox) and p67(phox). In contrast, O(2)(-) generation was not decreased by GC added to the assembled, catalytically active enzyme complex. In the xanthine/xanthine oxidase system, GC had no effect on the generation of O(2)(-). These data indicate that assembly of the respiratory burst oxidase of phagocytic cells may be a possible target of the pathologic actions of GC.  相似文献   

11.
We studied the effect of bilirubin on the NADPH-dependent superoxide production induced by sodium dodecyl sulfate in a cell-free system consisting of the membrane and cytosolic fractions of pig neutrophils. Preincubation of the cytosolic fraction with bilirubin before the addition of sodium dodecyl sulfate resulted in the time- and dose-dependent inhibition of the superoxide production while the preincubation of the membrane fraction with the tetrapyrrole did not result in the inhibition. When the pigment was added after the initiation of the reaction, the ongoing production was not affected by the addition. Other tetrapyrroles, such as hemin, protoporphyrin and biliverdin, also inhibited the production. The results indicate that bilirubin inhibits the activation process of the superoxide producing NADPH oxidase by decreasing the potency of the cytosolic fraction and its inhibitory effect seems to be due to the hydrophobic nature of the tetrapyrrole.  相似文献   

12.
A soluble protein containing very weak NADPH-dependent nitroblue tetrazolium reductase activity was partially purified from the cytosol of dormant human neutrophils by DEAE-5PW ion exchange chromatography. This preparation of cytosolic reductase exhibited three nitroblue tetrazolium-reducing bands with approximate molecular masses of 95, 45, and 40 kDa on non-denaturing gel electrophoresis in the presence of 35 mM n-octyl-glucoside, and two major bands with apparent masses of 45 and 40 kDa along with a few variable minor bands on SDS-polyacrylamide gel electrophoresis. The 45 kDa protein is susceptible to endogenous proteases and is rapidly converted to proteolysis products at 36 degrees C. The partially purified cytosolic protein(s) provided a concentration-dependent activation of NADPH oxidase in the cell-free system composed of the membrane, arachidonate and magnesium ion. In addition, polyclonal antibodies raised against rabbit hepatic NADPH:cytochrome P-450 reductase [EC 1.6.99.1] showed positive immunological reactivity toward cytosolic 45 kDa protein and also caused 30 to 40% inhibition of superoxide anion production in the cell-free system.  相似文献   

13.
14.
We sought to determine whether the extracellular compartment contributed to seizure-induced superoxide (O2*-) production and to determine the role of the NADPH oxidase complex as a source of this O2*- production. The translocation of NADPH oxidase subunits (p47phox, p67phox and rac1) was assessed by immunoblot analysis and NADPH-driven O2*- production was measured using 2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl)-8-benzyl-3,7-dihydroimidazo [1,2-alpha] pyrazin-3-one-enhanced chemiluminescence. Kainate-induced status epilepticus resulted in a time-dependent translocation of NADPH oxidase subunits (p47phox, p67phox and rac-1) from hippocampal cytosol to membrane fractions. Hippocampal membrane fractions from kainate-injected rats showed increased NADPH-driven and diphenylene iodonium-sensitive O2*- production in comparison to vehicle-treated rats. The time-course of kainate-induced NADPH oxidase activation coincided with microglial activation in the rat hippocampus. Finally, kainate-induced neuronal damage and membrane oxygen consumption were inhibited in mice overexpressing extracellular superoxide dismutase. These results suggest that seizure activity activates the membrane NADPH oxidase complex resulting in increased formation of O2*-.  相似文献   

15.
Polyphenol oxidase (PPO) was extracted from beet root, in both soluble and membrane fractions, and in both cases the enzyme was in a latent state. PPO from the membrane fraction showed no diphenolase activity unless it was activated by trypsin or sodium dodecyl sulfate (SDS). The kinetics of the activation process of latent PPO by trypsin was studied and the specific rate constant of active PPO formation, k 3 , showed a value of 0.03 s(-1). The protease-activated form showed a pH optimum (6.5) and kinetic properties identical to those of the SDS-activated enzyme. Evidence is provided for the existence of a common peptide responsible for the regulation of the activity of the enzyme by both proteolysis and SDS detergent. Formation of the active proteolyzate was followed by spectroscopic measurements, Western blotting and partially denaturing SDS-PAGE.  相似文献   

16.
17.
The superoxide-generating neutrophil NADPH oxidase can be activated in cell-free reconstitution systems by several agonists, most notably arachidonic acid and the detergent sodium dodecyl sulfate. In this study, we show that both phosphatidic acids and diacylglycerols can serve separately as potent, physiologic activators of NADPH oxidase in a cell-free system. Stimulation of superoxide generation by these lipids was dependent upon both Mg(2+) and agonist concentration. Activation of NADPH oxidase by phosphatidic acids did not appear to require their conversion to corresponding diacylglycerols by phosphatidate phosphohydrolase, since diacylglycerols were much slower than phosphatidic acids to activate the system and required the presence of ATP. Stimulation of the oxidase by dioctanoylglycerol proved to be by a means other than the activation of protein kinase C. Instead, dioctanoylglycerol was converted to dioctanoylphosphatidic acid by an endogenous diacylglycerol kinase present in the cell-free reaction system. This conversion was sensitive to the diacylglycerol kinase inhibitor R59949 and explains the markedly slower kinetics of activation and the novel ATP requirement seen with dioctanoylglycerol. The level of dioctanoylphosphatidic acid formed was suboptimal for NADPH oxidase activation but could synergize with the unmetabolized dioctanoylglycerol to activate superoxide generation.  相似文献   

18.
A soluble extract of neutrophil granules interfered with activation of the NADPH oxidase in a cell-free system. The extract had no effect on superoxide production by preactivated enzyme. The inhibitory activity was retained during dialysis and was lost upon exposure to proteinase K indicating that the active substance was a protein. The inhibitor exhibited a high stability at elevated temperatures. Chromatography of granules extract on ion exchangers implied that the inhibitor was a positively charged protein eluting from S Sepharose cation exchanger above 0.4M concentration of NaCl.  相似文献   

19.
This report describes the relationship between the amount of sodium dodecyl sulfate present in a sample solution and the electrophoretic mobility of the protein-dodecyl sulfate complexes. In order to determine the extent of any conformational changes in the proteins and to establish a correlation between any of these structural changes and the electrophoretic behavior, visible absorption spectra and circular dichroism spectra were obtained for heme proteins in the presence of the same amounts of surfactants as used in electrophoresis.From the results obtained, it is apparent that the amount of sodium dodecyl sulfate present in the sample solution must be taken into consideration when performing a separation. Optimum experimental conditions are chosen for attaining enhanced separation and a maximized linear range of molecular weights of proteins that can be accurately determined.  相似文献   

20.
Inactivation of prions by acidic sodium dodecyl sulfate   总被引:4,自引:0,他引:4       下载免费PDF全文
Prompted by the discovery that prions become protease-sensitive after exposure to branched polyamine dendrimers in acetic acid (AcOH) (S. Supattapone, H. Wille, L. Uyechi, J. Safar, P. Tremblay, F. C. Szoka, F. E. Cohen, S. B. Prusiner, and M. R. Scott, J. Virol. 75:3453-3461, 2001), we investigated the inactivation of prions by sodium dodecyl sulfate (SDS) in weak acid. As judged by sensitivity to proteolytic digestion, the disease-causing prion protein (PrPSc) was denatured at room temperature by SDS at pH values of < or =4.5 or > or =10. Exposure of Sc237 prions in Syrian hamster brain homogenates to 1% SDS and 0.5% AcOH at room temperature resulted in a reduction of prion titer by a factor of ca. 10(7); however, all of the bioassay hamsters eventually developed prion disease. When various concentrations of SDS and AcOH were tested, the duration and temperature of exposure acted synergistically to inactivate both hamster Sc237 prions and human sporadic Creutzfeldt-Jakob disease (sCJD) prions. The inactivation of prions in brain homogenates and those bound to stainless steel wires was evaluated by using bioassays in transgenic mice. sCJD prions were more than 100,000 times more resistant to inactivation than Sc237 prions, demonstrating that inactivation procedures validated on rodent prions cannot be extrapolated to inactivation of human prions. Some procedures that significantly reduced prion titers in brain homogenates had a limited effect on prions bound to the surface of stainless steel wires. Using acidic SDS combined with autoclaving for 15 min, human sCJD prions bound to stainless steel wires were eliminated. Our findings form the basis for a noncorrosive system that is suitable for inactivating prions on surgical instruments, as well as on other medical and dental equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号