首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Efficient transfection and expression of cDNA libraries in human cells has been achieved with an Epstein-Barr virus-based subcloning vector (EBO-pcD). The plasmid vector contains a resistance marker for hygromycin B to permit selection for transformed cells. The Epstein-Barr virus origin for plasmid replication (oriP) and the Epstein-Barr virus nuclear antigen gene have also been incorporated into the vector to ensure that the plasmids are maintained stably and extrachromosomally. Human lymphoblastoid cells can be stably transformed at high efficiency (10 to 15%) by such plasmids, thereby permitting the ready isolation of 10(6) to 10(7) independent transformants. Consequently, entire high-complexity EBO-pcD expression libraries can be introduced into these cells. Furthermore, since EBO-pcD plasmids are maintained as episomes at two to eight copies per cell, intact cDNA clones can be readily isolated from transformants and recovered by propagation in Escherichia coli. By using such vectors, human cells have been stably transformed with EBO-pcD-hprt to express hypoxanthine-guanine phosphoribosyltransferase and with EBO-pcD-Leu-2 to express the human T-cell surface marker Leu-2 (CD8). Reconstruction experiments with mixtures of EBO-pcD plasmids demonstrated that one clone of EBO-pcD-hprt per 10(6) total clones or one clone of EBO-pcD-Leu-2 per 2 x 10(4) total clones can be recovered intact from the transformed cells. The ability to directly select for expression of very rare EBO-pcD clones and to then recover these episomes should make it possible to clone certain genes where hybridization and immunological screening methods are not applicable but where a phenotype can be scored or selected in human cell lines.  相似文献   

2.
We have developed a library of hairpin ribozyme genes that can be delivered and expressed in mammalian cells with the purpose of identifying genes involved in a specific phenotype. By applying the appropriate phenotypic selection criteria in tissue culture, we can enrich for ribozymes that knock down expression of an unknown gene or genes in a particular pathway. Once specific ribozymes are selected, their target binding sequence is used to identify and clone the target gene. We have applied this technology to identify a putative tumor suppressor gene that has been activated in HF cells, a nontransformed revertant of HeLa cells. Using soft agar growth as the selection criteria for gain of transformation, we have isolated ribozymes capable of triggering anchorage-independent growth. Isolation of one of these ribozymes, Rz 568, led to the identification and cloning of the human homologue of the Drosophila gene ppan, a gene involved in DNA replication, cell proliferation, and larval development. This novel human gene, PPAN, was verified as the biologically relevant target of Rz 568 by creating five additional "target validation" ribozymes directed against additional sites in the PPAN mRNA. Rz 568 and all of the target validation ribozymes reduced the level of PPAN mRNA in cells and promoted anchorage-independent growth. Exogenous expression of PPAN in HeLa and A549 tumor cells reduced their ability to grow in soft agar, underscoring its role in regulating anchorage-dependent growth. This study describes a novel method for gene discovery where the intracellular application of hairpin ribozyme libraries was used to identify a novel gene based solely on a phenotype.  相似文献   

3.
B Y Wong  H Chen  S W Chung    P M Wong 《Journal of virology》1994,68(9):5523-5531
Retroviral gene transfer efficiently delivers genes of interest stably into target cells, and expression cDNA cloning has been shown to be highly successful. Considering these two advantages, we now report a method by which one can identify genes stimulating cell growth through functional analysis. The first step requires the construction of a retroviral cDNA expression library and the optimization of transfection of vector DNA into virus packaging cells. The second step involves the cocultivation of target cells with libraries of retrovirus-producing cells, resulting in the amplification of target cells transduced with a gene(s) stimulating cell growth. Under standardized conditions of transfection, we detected an average of 4,000 independent clones per dish, among which expression of a retroviral beta-galactosidase gene at an abundance of 0.2% could be detected. Next, we demonstrated the augmentation of the sensitivity of the assay by retroviral infection and functional analysis. We did this by cocultivating factor-dependent (FD) cells with dishes of GP/E cells transfected with plasmids containing various molar ratios of pN2-IL3 DNA and retroviral library cDNA and by determining the highest dilution of pN2-IL3 which still resulted in the conversion of FD cells to factor independence. The retroviral interleukin-3 gene at an abundance as low as 0.001% could be detected. Indeed, we were able to detect from FD cells the development of factor-independent colonies with different phenotypes after retroviral transfer of cDNAs from an immortalized hemopoietic stem cell line. Thus, the combination of a standardized high-efficiency DNA transfection and retrovirus-mediated gene transfer should facilitate the identification of genes capable of conferring to target FD cells a detectable new function or phenotype. By scaling up the size of the experiment realistically during screening, the assay can detect cDNA at an abundance of lower than 0.0001%.  相似文献   

4.
5.
6.
C Peterson  R Legerski 《Gene》1991,107(2):279-284
We constructed a human cDNA expression vector by combining an episomal Epstein-Barr virus (EBV) vector with the expression cassette from the transient-expression vector, pCDM8. This new vector, designated pEBS7, exhibited high-level expression of reporter genes in normal and repair-deficient xeroderma pigmentosum cell lines. Reconstruction experiments indicated that marker genes diluted to a frequency of 10(-5) can be rescued on a single transfection dish. Moreover, derivative cell lines that constitutively express the gene encoding EBV nuclear antigen 1 exhibited a tenfold enhancement in the frequency of rescue of marker genes. The feasibility of preparing large-scale directional or nondirectional cDNA libraries in pEBS7 was demonstrated and reconstruction experiments indicated that marker genes could be rescued from either library with equal efficiency. These results establish a high-efficiency system for the isolation of genes by direct phenotypic selection in human mutant cell lines.  相似文献   

7.
8.
Antiestrogens, such as tamoxifen, are widely used for endocrine treatment of estrogen receptor-positive breast cancer. However, as breast cancer progresses, development of tamoxifen resistance is inevitable. The mechanisms underlying this resistance are not well understood. To identify genes involved in tamoxifen resistance, we have developed a rapid screening method. To alter the tamoxifen-sensitive phenotype of human ZR-75-1 breast cancer cells into a tamoxifen-resistant phenotype, the cells were infected with retroviral cDNA libraries derived from human placenta, human brain, and mouse embryo. Subsequently, the cells were selected for proliferation in the presence of 4-hydroxy-tamoxifen (OH-TAM) and integrated cDNAs were identified by sequence similarity searches. From 155 OH-TAM-resistant cell colonies, a total of 25 candidate genes were isolated. Seven of these genes were identified in multiple cell colonies and thus cause antiestrogen resistance. The epidermal growth factor receptor, platelet-derived growth factor receptor-alpha, platelet-derived growth factor receptor-beta, colony-stimulating factor 1 receptor, neuregulin1, and fibroblast growth factor 17 that we have identified have been described as key regulators in the mitogen-activated protein kinase pathway. Therefore, this pathway could be a valuable target in the treatment of patients with breast cancer resistant to endocrine treatment. In addition, the putative gene LOC400500, predicted by in silico analysis, was identified. We showed that ectopic expression of this gene, designated as breast cancer antiestrogen resistance 4 (BCAR4), caused OH-TAM resistance and anchorage-independent cell growth in ZR-75-1 cells and that the intact open reading frame was required for its function. We conclude that retroviral transfer of cDNA libraries into human breast cancer cells is an efficient method for identifying genes involved in tamoxifen resistance.  相似文献   

9.
cDNA expression cloning is a powerful method for the rescue and identification of genes that are able to confer a readily identifiable phenotype on specific cell types. Retroviral vectors provide several advantages over DNA-mediated gene transfer for the introduction of expression libraries into eukaryotic cells since they can be used to express genes in a wide range of cell types, including those that form important experimental systems such as the hemopoietic system. We describe here a straightforward and efficient method for generating expression libraries by using a murine retroviral vector. Essentially, the method involves the directional cloning of cDNA into the retroviral vector and the generation of pools of stable ecotropic virus producing cells from this DNA. The cells so derived constitute the library, and the virus they yield is used to infect appropriate target cells for subsequent functional screening. We have demonstrated the feasibility of this procedure by constructing several large retroviral libraries (10(5) to 10(6) individual clones) and then using one of these libraries to isolate cDNAs for interleukin-3 and granulocyte-macrophage colony-stimulating factor on the basis of the ability of these factors to confer autonomous growth on the factor-dependent hemopoietic cell line FDC-P1. Moreover, the frequency at which these factor-independent clones were isolated approximated the frequency at which they were represented in the original plasmid library. These results suggest that expression cloning with retroviruses is a practical and efficient procedure and should be a valuable method for the isolation of important regulatory genes.  相似文献   

10.
11.
12.
Homologous clones that encode the beta chain of the T cell antigen receptor have been isolated recently from both murine and human cDNA libraries. These cDNA clones have been used in connection with interspecies hybrid cell lines to determine that the murine T cell receptor gene is located on chromosome 6 and the human gene on chromosome 7. In situ hybridization confirms these data and further localizes these genes to band B of chromosome 6 in the mouse and bands 7p13-21 in the human genome. The organization of the T cell antigen receptor J beta gene segments and C beta genes appears to be conserved, since very few intraspecies polymorphisms of restriction fragment length have been detected in either mouse or human DNA.  相似文献   

13.
The avian DT40 cell system represents a novel method to generate loss of function mutations in vertebrate cells. These chicken B lymphoma cells undergo homologous recombination at very high frequencies and can thus be used to "knock out" genes believed to function in apoptotic processes. The knockout cells can then be used to determine how the cell death process is modulated after induction of apoptosis and to order components in cell death pathways. The system can be further modified, using tetracycline-responsive promoters, to allow expression of wild-type cDNAs to rescue "knockout cells" if the gene of interest is essential. Alternatively, cDNA expression constructs containing mutations or deletions in the cDNA encoding the absent protein can be used to delineate functional domains. cDNA expression libraries or known proteins believed to function downstream of the target in a signal transduction pathway could also be transfected into the knockout cell line, and the resultant cells could be assayed for complementation and/or rescue of the apoptotic alteration/defect. Finally, the system has recently been adapted to allow disruption of human genes in DT40/human hybrid cell lines thereby potentially extending this system for use in studying human genes.  相似文献   

14.
A novel method for cloning of genes coding for cytotoxic molecules based on a cell viability assay is described. The working hypothesis is that expression of DNA sequences coding for cytotoxic molecules in bacterial cells will lead to cell death or impairment, and the isolation of the impaired or dead cells could lead to identification of DNA sequences responsible for debilitating the host cells. We verified this concept by isolating the well known antimicrobial Puroindoline b gene in Escherichia coli cells. We further demonstrated the feasibility to use this approach for isolating DNA encoding for antimicrobials from cDNA expression libraries. Sequence analysis and bioassay indicated that the isolated clones encoded previously characterized antimicrobial proteins (AMPs), proteins not previously characterized as AMPs, as well as novel antimicrobial peptides. In addition, clones harboring ribosomal protein encoding cDNA were also identified. Therefore, this method could also be used to identify host genes important in maintaining bacterial cell viability.  相似文献   

15.
A number of groups have developed libraries of siRNAs to identify genes through functional genomics. While these studies have validated the approach of making functional RNAi libraries to understand fundamental cellular mechanisms, they require information and knowledge of existing sequences since the RNAi sequences are generated synthetically. An alternative strategy would be to create an RNAi library from cDNA. Unfortunately, the complexity of such a library of siRNAs would make screening difficult. To reduce the complexity, longer dsRNAs could be used; however, concerns of induction of the interferon response and off-target effects of long dsRNAs have prevented their use. As a first step in creating such libraries, long dsRNA was expressed in mammalian cells. The 250 nt dsRNAs were capable of efficiently silencing a luciferase reporter gene that was stably transfected in MDA-MB-231 cells without inducing the interferon response or off-target effects any more than reported for siRNAs. In addition, a long dsRNA expressed in the same cell line was capable of silencing endogenous c-met expression and inhibited cell migration, whereas the dsRNA against luciferase had no effect on c-met or cell migration. The studies suggest that large dsRNA libraries are feasible and that functional selection of genes will be possible.  相似文献   

16.
17.
Functional cloning of drug resistance genes from retroviral cDNA libraries   总被引:1,自引:0,他引:1  
To improve the curative success of chemotherapy, it will be essential to understand the molecular basis of drug resistance (DR) and sensitivity. We have developed a cell culture system that enables the functional cloning of mammalian DR genes based on phenotypic selection after overexpression of mammalian retroviral cDNA libraries and validated our system using the anticancer drug cisplatin. ERCC1-deficient and therefore cisplatin-hypersensitive mouse embryonic fibroblast target cells were transduced with a human placenta retroviral cDNA library. Subsequent cisplatin selection yielded 20 DR clones, each containing a recurring human ERCC1 gene. Surprisingly, nine of these clones contained 5'-truncated ERCC1 sequences that required alternative splicing of the vector sequence to encode a functional ERCC1 protein. The usage of cryptic splice sites in the vector sequence should be taken into consideration when interpreting results from retroviral gene expression applications, and might have consequences for the safe application of retroviral constructs in gene therapy.  相似文献   

18.
19.
The Cys2His2 zinc finger (ZF) is the most frequently found sequence-specific DNA-binding domain in eukaryotic proteins. The ZF’s modular protein–DNA interface has also served as a platform for genome engineering applications. Despite decades of intense study, a predictive understanding of the DNA-binding specificities of either natural or engineered ZF domains remains elusive. To help fill this gap, we developed an integrated experimental-computational approach to enrich and recover distinct groups of ZFs that bind common targets. To showcase the power of our approach, we built several large ZF libraries and demonstrated their excellent diversity. As proof of principle, we used one of these ZF libraries to select and recover thousands of ZFs that bind several 3-nt targets of interest. We were then able to computationally cluster these recovered ZFs to reveal several distinct classes of proteins, all recovered from a single selection, to bind the same target. Finally, for each target studied, we confirmed that one or more representative ZFs yield the desired specificity. In sum, the described approach enables comprehensive large-scale selection and characterization of ZF specificities and should be a great aid in furthering our understanding of the ZF domain.  相似文献   

20.
Suppression of gene expression by small interfering RNA (siRNA) has proved to be a gene-specific and cost effective alternative to other gene suppression technologies. Short hairpin RNAs (shRNAs) generated from the vector-based expression are believed to be processed into functional siRNAs in vivo, leading to gene silencing. Since an shRNA library carries a large pool of potential siRNAs, such a library makes it possible to knock down gene expression at the genome wide scale. Although much of research has been focused on generating shRNA libraries from either individually made gene specific sequences or cDNA libraries, there is no report on constructing randomized shRNA libraries, which could provide a good alternative to these existing libraries. We have developed a method of constructing shRNAs from randomized oligonucleotides. Through this method, one can generate a partially or fully randomized shRNA library for various functional analyses. We validated this procedure by constructing a p53-specific shRNA. Western blot revealed that the p53-shRNA successfully suppressed expression of the endogenous p53 in MCF-7 cells. We then made a partially randomized shRNA library. Sequencing of 15 randomly picked cloned confirmed the randomness of the library. Therefore, the library can be used for various functional assays, such as target validation when a suitable screening or selection method is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号