首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides possess several attractive features when compared to small molecule and protein therapeutics, such as high structural compatibility with target proteins, the ability to disrupt protein-protein interfaces, and small size. Efficient design of high-affinity peptide ligands via rational methods has been a major obstacle to the development of this potential drug class. However, structural insights into the architecture of protein-peptide interfaces have recently culminated in several computational approaches for the rational design of peptides that target proteins. These methods provide a valuable alternative to experimental high-resolution structures of target protein-peptide complexes, bringing closer the dream of in silico designed peptides for therapeutic applications.  相似文献   

2.
3.
Backbone modifications have been introduced into the melanoma derived peptide MART-1(27-35) to increase its binding to class I major histocompatibility complex HLA-A2 molecule, and ultimately to enhance its immunogenicity. Each analogue was obtained by replacing one peptide bond at a time in the natural epitope by the aminomethylene (CH2-NH) surrogate. All analogues displayed an increased resistance to proteolysis. Interestingly, the comparative results showed that five analogues bound more efficiently to HLA-A2 than the parent peptide. On the other hand, two pseudopeptide/HLA-A2 complexes were recognized by one melanoma-specific T cell clone. Close examination of the impact of such modifications at the molecular level provides useful supports for the rational design of stable compounds with applications in anti-tumour specific immunotherapy and in vaccine development.  相似文献   

4.
5.

Background

Psalmopeotoxin I (PcFK1), a protein of 33 aminoacids derived from the venom of the spider Psalmopoeus Cambridgei, is able to inhibit the growth of Plasmodium falciparum malaria parasites with an IC in the low micromolar range. PcFK1 was proposed to act as an ion channel inhibitor, although experimental validation of this mechanism is lacking. The surface loops of PcFK1 have some sequence similarity with the parasite protein sequences cleaved by PfSUB1, a subtilisin-like protease essential for egress of Plasmodium falciparum merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity.

Findings

Molecular modeling and docking calculations showed that one loop could interact with the binding site of PfSUB1. The calculated free energy of binding averaged −5.01 kcal/mol, corresponding to a predicted low-medium micromolar constant of inhibition. PcFK1 inhibited the enzymatic activity of the recombinant PfSUB1 enzyme and the in vitro P.falciparum culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1.

Conclusions

Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering.  相似文献   

6.
Partial digestion of the native beta subunit of F1-ATPase from the thermophilic Bacillus strain PS3 by three different proteases produced a limited number of peptide fragments. In most cases, the peptides remained associated, and the gross structure of the beta subunit was not destroyed. Furthermore, most peptides were able to reassociate into the form of the beta subunit after denaturating urea treatment. Therefore, the cleaved sites are most likely located in water-exposed loop regions in the tertiary structure of the protein. Almost all peptides were analyzed, and 17 cleaved sites were determined. From the analysis of the distribution of cleaved sites and deletions or insertions in the multiple amino acid sequence alignment of proteins homologous to the beta subunit, locations of five loops and four candidate loops in the beta subunit are suggested. There are two large loops in the central region of the beta subunit sequence, and dicyclohexylcarbodiimide-reactive Glu190 is located in one of them. Tyr341, involved in putative catalytic ATP binding, is also found in one of the loops. Then, taking cleaved sites as a reference, two kinds of expression plasmids, each of which carried genes of two complementary peptide fragments, 1-193 and 198-473 or 1-284 and 285-473, were constructed and expressed in Escherichia coli. For each plasmid, two peptides were coexpressed, associated into a stable beta subunit form in E. coli cells, and purified without dissociation. When these beta subunits were denatured by urea and applied to polyacrylamide gel without denaturant, a protein band with the same mobility as that of the beta subunit appeared, indicating that reassociation of peptide fragments into the form of the beta subunit occurred upon removal of urea. These beta subunits retained the ability to reconstitute the alpha 3 beta 3 gamma complexes even though the efficiency of reconstitution and the recovered ATPase activities were decreased. These complexes were stable at high or low temperature, and ATPase activities were sensitive to inhibition by N3-.  相似文献   

7.
To delineate the role of the melanocyte lineage-specific protein Melan-A/MART-1 in melanogenic functions, a set of biochemical and microscopical studies was performed. Biochemical analysis revealed that Melan-A/MART-1 is post-translationally acylated and undergoes a rapid turnover in a pigmented melanoma cell line. Immunofluorescence and immunoelectron microscopy analyses indicated that Melan-A/MART-1 is mainly located in the Golgi area and only partially colocalizes with melanosomal proteins. Quantitative immunoelectron microscopy showed that the highest proportion of the cellular content of Melan-A/MART-1 was found in small vesicles and tubules throughout the cell, whereas the concentration was maximal in the Golgi region, particularly the trans-Golgi network. Substantial labeling was also present on melanosomes, endosomes, ER, nuclear envelope, and plasma membrane. In early endosomes, Melan-A was enriched in areas of the limiting membrane covered by a bi-layered coat, a structural characteristic of melanosomal precursor compartments. Upon melanosome maturation, Melan-A concentration decreased and its predominant localization shifted from the limiting membrane to internal vesicle membranes. In conjunction with its acylation, the high expression levels of Melan-A in the trans-Golgi network, in dispersed vesicles, and on the limiting membrane of premelanosomes indicate that the protein may play a role during the early stage of melanosome biogenesis.  相似文献   

8.
9.
10.
T cells engineered to express TCRs specific for tumor Ags can drive cancer regression. The first TCRs used in cancer gene therapy, DMF4 and DMF5, recognize two structurally distinct peptide epitopes of the melanoma-associated MART-1/Melan-A protein, both presented by the class I MHC protein HLA-A*0201. To help understand the mechanisms of TCR cross-reactivity and provide a foundation for the further development of immunotherapy, we determined the crystallographic structures of DMF4 and DMF5 in complex with both of the MART-1/Melan-A epitopes. The two TCRs use different mechanisms to accommodate the two ligands. Although DMF4 binds the two with a different orientation, altering its position over the peptide/MHC, DMF5 binds them both identically. The simpler mode of cross-reactivity by DMF5 is associated with higher affinity toward both ligands, consistent with the superior functional avidity of DMF5. More generally, the observation of two diverging mechanisms of cross-reactivity with the same Ags and the finding that TCR-binding orientation can be determined by peptide alone extend our understanding of the mechanisms underlying TCR cross-reactivity.  相似文献   

11.
12.
Phosphorylation of Mdm2, in response to DNA damage, resulted in prevention of p53 degradation in the cytoplasm as well as reduction of its binding with monoclonal antibody (mAb) 2A10. Using a 15-mer phage-peptide library, we identified two 2A10-epitopes on human Mdm2 (hdm2): at positions 255-266 (LDSEDYSLSEEG) and 389-400 (QESDDYSQPSTS). Synthetic peptides corresponding to the above sites, inhibit the binding of mAb2A10 to Mdm2 with high (4.5 x 10(-9)M) and moderate affinity (1.1 x 10(-7)M), respectively. Phospho-derivatives of these peptides, and of single human Mdm2 mutations S260D or S395D resulted in a considerable reduction in their binding with mAb2A10. These results provide a molecular explanation for the observation that reactivity of Mdm2 with mAb2A10 is inhibited by phosphorylation.  相似文献   

13.
We characterized rice cDNA sequences for OsDr1 and OsDrAp1, which encode structural homologs of the eukaryotic general repressors Dr1 and DrAp1, respectively. OsDr1 and OsDrAp1 are nuclear proteins that interact with each other and with the TATA binding protein/DNA complex. In vitro and in vivo functional analyses showed that OsDrAp1 functions as a repressor, unlike its role in other eukaryotic systems, in which DrAp1 is a corepressor. OsDr1 and OsDrAp1 functioned together as a much stronger repressor than either one alone. Functional dissections revealed that the N-terminal histone-fold domains of OsDr1 and OsDrAp1 were necessary and sufficient for their repression and protein-protein interaction with each other. The unique glutamine- and proline-rich domain of OsDr1 had no repression activity. The basic amino acid-rich region and an arginine and glycine repeat domain of OsDrAp1 enhanced its repression activity. Thus, although OsDr1 and OsDrAp1 function as repressors, the functions of the two components are reversed compared with those of their nonplant counterparts.  相似文献   

14.
It is widely accepted that the repertoire of Melan-A-specific T cells naturally selected in melanoma patients is diverse and mostly nonoverlapping among different individuals. To date, however, no studies have addressed the TCR profile in different tumor sites and the peripheral blood from the same patient. We compared the TCR usage of Melan-A-specific T cells from different compartments of a single melanoma patient to evaluate possible clonotype expansion or preferential homing over a 4-mo follow-up period. Using HLA-A2 peptide tetramers, CD8(+) T cells recognizing the modified Melan-A immunodominant ELAGIGILTV peptide were isolated from four metastatic lesions resected from a single melanoma patient, and their TCR repertoire was studied. A panel of T cell clones was generated by cell cloning of tetramer-positive cells. Analysis of the TCR beta-chain V segment and the complementarity-determining region 3 (CDR3) length and sequence revealed a large diversity in the TCR repertoire, with only some of the clones showing a partial conservation in the CDR3. A similar degree of diversity was found by analyzing a number of T cell clones obtained after sorting a Melan-A-specific population derived from PBLs of the same patient after in vitro culture with the immunodominant epitope. Moreover, clonotypes found at one site were not present in another, suggesting the lack of expansion and circulation of one or more clonotypes. Taken together, these results buttress the notion that the CTLs recognizing the immunodominant Ag of Melan-A comprise a high number of different clonotypic TCR, of which only some exhibit common features in the CDR3.  相似文献   

15.
Melanoma antigen recognized by T cells 1 (MART-1) is a melanoma-specific antigen, which has been thoroughly studied in the context of immunotherapy against malignant melanoma and which is found only in the pigment cell lineage. However, its exact function and involvement in pigmentation is not clearly understood. Melanoma antigen recognized by T cells 1 has been shown to interact with the melanosomal proteins Pmel17 and OA1. To understand the function of MART-1 in pigmentation, we developed a new knockout mouse model. Mice deficient in MART-1 are viable, but loss of MART-1 leads to a coat color phenotype, with a reduction in total melanin content of the skin and hair. Lack of MART-1 did not affect localization of melanocyte-specific proteins nor maturation of Pmel17. Melanosomes of hair follicle melanocytes in MART-1 knockout mice displayed morphological abnormalities, which were exclusive to stage III and IV melanosomes. In conclusion, our results suggest that MART-1 is a pigmentation gene that is required for melanosome biogenesis and/or maintenance.  相似文献   

16.
17.
18.
19.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

20.
β-lactamases are enzymes that catalyze the hydrolysis of β-lactam antibiotics. β-lactamase/β-lactamase inhibitor protein (BLIP) complexes are emerging as a well characterized experimental model system for studying protein-protein interactions. BLIP is a 165 amino acid protein that inhibits several class A β-lactamases with a wide range of affinities: picomolar affinity for K1; nanomolar affinity for TEM-1, SME-1, and BlaI; but only micromolar affinity for SHV-1 β-lactamase. The large differences in affinity coupled with the availability of extensive mutagenesis data and high-resolution crystal structures for the TEM-1/BLIP and SHV-1/BLIP complexes make them attractive systems for the further development of computational design methodology. We used EGAD, a physics-based computational design program, to redesign BLIP in an attempt to increase affinity for SHV-1. Characterization of several of designs and point mutants revealed that in all cases, the mutations stabilize the interface by 10- to 1000-fold relative to wild type BLIP. The calculated changes in binding affinity for the mutants were within a mean absolute error of 0.87 kcal/mol from the experimental values, and comparison of the calculated and experimental values for a set of 30 SHV-1/BLIP complexes yielded a correlation coefficient of 0.77. Structures of the two complexes with the highest affinity, SHV-1/BLIP (E73M) and SHV-1/BLIP (E73M, S130K, S146M), are presented at 1.7 Å resolution. While the predicted structures have much in common with the experimentally determined structures, they do not coincide perfectly; in particular a salt bridge between SHV-1 D104 and BLIP K74 is observed in the experimental structures, but not in the predicted design conformations. This discrepancy highlights the difficulty of modeling salt bridge interactions with a protein design algorithm that approximates side chains as discrete rotamers. Nevertheless, while local structural features of the interface were sometimes miscalculated, EGAD is globally successful in designing complexes with increased affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号