首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among many other abiotic variations in an estuarine ecosystem, osmotic stress is an inescapable part of life. Organisms living in such environments must cope with changing osmotic conditions by either behavioral or physiological adaptations. Pollutants may increase the physiological stresses that an osmoregulating animal may encounter. We have developed a flow-through system that exposes test species to insecticides and continuously changing salinity conditions. This system has provided an insight into how susceptibility of a species to an insecticide can be affected by changing concentrations of salinity. Toxicity tests using this system were conducted with two arthropod species that are found in saline habitats: mosquito Aedes taeniorhynchus (Wiedemann) and brine shrimp (Artemia sp.). Four insecticides-aldicarb, dimethoate, imidacloprid, and tebufenozide-were studied. Both species were exposed for 48 h to a concentration of various insecticides that would cause 50% of the population to die in hyperosmotic artificial sea water (ASW). The mortality rate for both species was more acute in increasing salinity (10-200% ASW) than in decreasing salinity (200-10% ASW) conditions. A. taeniorhynchus was more susceptible than Artemia when exposed to its hyperosmotic LC50 concentration of toxicant while experiencing a change in salinity, e.g., adjusting to a changing salinity decreased the LT50. Our results indicated a change in salinity; more importantly, the direction of change altered the susceptibility of these organisms.  相似文献   

2.
Anemones are frequently found in rocky intertidal coasts. As they have highly permeable body surfaces, exposure to the air or to salinity variations inside tidal pools can represent intense osmotic and ionic challenges. The intertidal Bunodosoma caissarum has been compared with the subtidal Anemonia sargassensis concerning their response to air exposure or salinity changes. B. caissarum maintains tissue hydration through mucus production and dome-shape formation when challenged with air exposure or extreme salinities (fresh water or hypersaline seawater, 45 psu) for 1-2h. Upon exposure to mild osmotic shocks for 6h (hyposmotic: 25 psu, or hyperosmotic: 37 psu), B. caissarum was able to maintain its coelenteron fluid (CF) osmolality stable, but only in 25 psu. A. sargassensis CF osmolality followed the external medium in both salinities. Isolated cells of the pedal disc of B. caissarum showed full capacity for calcium-dependent regulatory volume decrease (RVD) upon 20% hyposmotic shock, at least partially involving the release of KCl via K(+)-Cl(-) cotransport, and also of organic osmolytes. Aquaporins (HgCl(2)-inhibited) likely participate in this process. Cells of A. sargassensis showed partial RVD, after 20 min. Cells from both species were not capable of regulatory volume increase upon hyperosmotic shock (20%). Whole organism and cellular mechanisms allow B. caissarum to live in the challenging intertidal habitat, frequently facing air exposure and seawater dilution.  相似文献   

3.
Studies of whole-plant or crop responses to salinity often focus on yield or growth reduction in terms of solution ion concentration or electrical conductivity. The response functions describing salt stress may be better presented in terms of solution osmotic potential. We looked at the effect of increasing concentrations of NaCl and CaCl2, either alone or in equinormal combination, on three different plant species: bean (Phaseolus vulgaris L.), corn (Zea mays L.) and melon (Cucumis melo L.). Corn and melon were found to be relatively tolerant and beans more sensitive to salinity. When yield response was related to the electrical charge concentration of the salts, i.e. salinity was expressed in units of mequiv. L?1 or electrical conductivity, the stress effects of Na and Ca appeared to be of different magnitudes: plant growth was more sensitive to excess Na than to excess Ca and the effect of combined Na and Ca was intermediate. The effects of the two salts were, however, indistinguishable when salinity was expressed in terms of osmotic potential of the water. For all three species, the response curves of yield as a function of level of equipotential solutions of NaCl, CaCl2 or combinations of the two salts practically overlapped. Presentation and interpretation of the whole-plant salinity response in terms of osmotic potential would be beneficial in attempts to differentiate between the osmotic and toxic effects of salinity, in normalizing data sets and in increasing their relevance in practical applications.  相似文献   

4.
SYNOPSIS. Unlike other freshwater bivalves that survive formonths in deionized water, Dreissena polymorpha requires minimalconcentrations of Na, K, Mg, and Cl in the bathing medium forlong-term survival. Although ion transport rates are higherin D. polymorpha compared to other freshwater bivalves, theytend to have lower blood solute concentrations. D. polymorphahas an unusually "leaky" epithelium with a high paracellularpermeability to solutes. Thus, even with high transport rates,it may not be possible for zebra mussels to retain higher bloodsolutes because of the extensive passive loss of ions. Undera hyperosmotic stress, D. polymorpha will rapidly osmoconform(about 12 hr) due primarily to the diffusion of solutes andpartially to the osmotic loss of water. D. polymorpha is notcapable of surviving an imbalance of Na/K in the external medium.In the absence of K the cells will tend to lose volume to achieveisosmotic balance with the blood, but the animals usually diewithin a few days. If D. polymorpha is exposed to excess K inthe environment (1 mM), they will accumulate K in the blood.If the K enters the cells, cellular volume would expand dueto increase in osmolyte concentration, yet, if K remains inthe blood, there will be an electrochemical imbalance. In eithercase, the animal cannot survive much longer than a day. WhenNa and K are present in the medium in a balanced combinationapproximated by artificial seawater (ASW), D. polymorpha willsurvive an acute transfer to 100 mosm ASW indefinitely (months).Our preliminary studies have shown that D. polymorpha will toleratestep-wise acclimation to solutions >250 mosm provided thechanges in salinity do not exceed 50–100 mosm. Freshwaterbivalves, unlike the marine bivalves, have limited free aminoacids in their body fluids and must rely on inorganic ions forosmotic regulation. The free amino acids serve as an importantosmolyte buffer for volume regulation when an animal experiencesan environment of changing salinity. The inability of Dreissena,and perhaps other freshwater bivalves, to tolerate hyperosmoticallyinduced dehydration may be due, in part, to the inability toaccumulate or retain sufficient intracellular K to facilitateregulatory volume adjustments.  相似文献   

5.
Soil salinity and drought compromise water uptake and lead toosmotic adjustment in xero-halophyte plant species. These importantenvironmental constraints may also have specific effects onplant physiology. Stress-induced accumulation of osmocompatiblesolutes was analysed in two Tunisian populations of the Mediteraneanshrub Atriplex halimus L.—plants originating from a salt-affectedcoastal site (Monastir) or from a non-saline semi-arid area(Sbikha)—were exposed to nutrient solution containingeither low (40 mM) or high (160 mM) doses of NaCl or 15% polyethyleneglycol. The low NaCl dose stimulated plant growth in both populations.Plants from Monastir were more resistant to high salinity andexhibited a greater ability to produce glycinebetaine in responseto salt stress. Conversely, plants from Sbikha were more resistantto water stress and displayed a higher rate of proline accumulation.Proline accumulated as early as 24 h after stress impositionand such accumulation was reversible. By contrast, glycinebetaineconcentration culminated after 10 d of stress and did not decreaseafter the stress relief. The highest salt resistance of Monastirplants was not due to a lower rate of Na+ absorption; plantsfrom this population exhibited a higher stomatal conductanceand a prodigal water-use strategy leading to lower water-useefficiency than plants from Sbikha. Exogenous application ofproline (1 mM) improved the level of drought resistance in Monastirplants through a decrease in oxidative stress quantified bythe malondialdehyde concentration, while the exogenous applicationof glycinebetaine improved the salinity resistance of Sbikhaplants through a positive effect on photosystem II efficiency. Key words: Atriplex halimus, glycinebetaine, halophyte, NaCl, osmotic adjustment, proline, salinity, water stress  相似文献   

6.
In the bay of Arcachon, the individuals of Paragnathia formica (Hesse, 1864) undergo fluctuations of salinity, and the micro-cliffs which they live in are exposed at low tide.The males are very euryhaline and can undergo salinities from 1/10 sea water to 1.6 sea water without mortality. Their osmotic regulation is peculiar, continually hyperosmotic; its intensity however, increases in diluted media.These animals have a high resistance to long periods of emergence (several months) when they keep in their burrows. On the contrary, when they are not allowed to have a direct contact with water, even in an atmosphere with 100% r.h., they do not live more than 10 h. Therefore, by its physiology and its ethology, this species seems well adapted to its habitat.  相似文献   

7.
This study focuses on a mangrove system which is completely isolated from the sea, lacking any connecting tidal channels or creeks and far enough from the coastline to prevent tidal flushing. The reason why it has become isolated remains unclear. But it is obvious that this situation may have introduced important changes in soil salinity and hydrological patterns, which might be reflected in the present composition and zonation patterns of the mangrove community. Main findings of this study suggest that: (1) Plant species distribution is affected mainly by water logging and mineral content of soils. (2) Ground water is the only permanent supply of water and salts to the isolated mangrove. (3) Soils are subjected to different degrees of leaching of salts. (4) The K: Na ratios support that mangrove community is not subjected to salinity stress. (5) Continuous leaching of salts favor the advance of terrestrial non-halophytes plants.  相似文献   

8.
As a consequence of the combined effects of prey patchinessand diel or tidal vertical migrations in the water column, decapodcrustacean larvae may experience temporal or spatial variabilityin the availability of planktonic food. In a laboratory study,we evaluated effects of temporarily limited access to prey onthe larvae of three species of brachyuran crabs, Chasmagnathusgranulata, Cancer pagurus and Carcinus maenas. Stage-I zoeaewere fed ad libitum for 4 or 6 h per day (20 or 25% treatments;6 h tested in C. pagurus only), and rates of larval survivaland development were compared with those observed in continuouslyfed control groups (24 h, 100%). In C. granulata, we also testedif intraspecific variability in initial biomass of freshly hatchedlarvae originating from different broods has an influence onearly larval tolerance of food limitation. Moreover, we exposedembryos and larvae of this estuarine species to moderately decreasedsalinities to identify possible interactions of osmotic andnutritional stress. Finally, we evaluated in this species theeffect of food limitation on survival from hatching throughall larval instars to metamorphosis. In all three species, limitedaccess to prey had only weak or insignificant negative effectson survival through the Zoea-I stage. The strength of the effectsof temporary food limitation varied in C. granulata significantlyamong broods. However, no significant relationships were foundbetween initial larval biomass (C content) and either survivalor development duration. Strongly decreased survival to metamorphosiswas found when food limitation continued throughout larval development.Thus, early brachyuran crab larvae are well adapted to transitorylack of planktonic food. The capability of the Zoea-I stageof C. granulata to withstand nutritional stress also under conditionsof concomitant salinity stress allows them to exploit variousbrackish environments within estuarine gradients. However, continuedexposure to limited access to planktonic prey may exceed thenutritional flexibility of C. granulata larvae.  相似文献   

9.
N. Suárez 《Flora》2011,206(3):267-275
Ipomoea pes-caprae is widespread in pantropical coastal areas along the beach. The aim of this study was to investigate the salinity tolerance level and physiological mechanisms that allow I. pes-caprae to endure abrupt increases in salinity under brief or prolonged exposure to salinity variations. Xylem sap osmolality (Xosm), leaf water relations, gas exchange, and number of produced and dead leaves were measured at short- (1-7 d) and long- (22-46 d) term after a sudden increase in soil salinity of 0, 85, 170, and 255 mM NaCl. In the short-term, Xosm was not affected by salinity, but in the long-term there was a significant increase in plants grown in presence of salt compared with control plants. After salt addition, the plants showed osmotic stress with temporal cell turgor loss. However, the water potential gradient for water uptake was re-established at 4, 7 and 22 d after salt addition, at 85, 170 and 255 mM NaCl, respectively. In the short-term I. pes-caprae was able to tolerate salinities of up to 255 mM NaCl without significant reduction in carbon assimilation or growth. With the duration of stress, leaf ion concentration continued to increase and reached toxic levels at high salinity with a progressive decrease in photosynthetic rate, reduced leaf formation and accelerated senescence. Then, if high levels of soil salts from tidal inundation occur for short periods, the survival of I. pes-caprae is possible, but prolonged exposure to salinity may induce metabolic damage and reduce drastically the plant growth.  相似文献   

10.
Physiological effects of saline waters on zander   总被引:4,自引:0,他引:4  
Rapid transfer of zander Stizostedion lucioperca to hypoosmotic brackish water (mean osmolality 230 mOsmol kg–1 , c. 8 psu) significantly increased plasma chloride concentrations after 24 h compared to those transferred to fresh water, although plasma osmolality was not significantly affected. After 6 days, plasma osmolality was slightly elevated but stable plasma glucose and cortisol concentrations and blood haematocrit and haemoglobin suggest a lack of hormonal stress responses and resultant secondary effects. Rapid transfer of zander to a more saline environment, hyperosmotic to plasma (mean osmolality 462 mOsmol kg‐1, c. 16 psu) induced a greater increase in plasma osmolality and chloride concentrations within 24 h, with a further rise after 6 days exposure, but all fish maintained a state of hypo‐osmoregulation both 24 h and 6 days after transfer. The initial osmotic disturbance (at 24 h) was accompanied by increased plasma glucose, blood haematocrit and haemoglobin and a decreased mean cell haemoglobin concentration (MCHC), suggesting an adrenergic stress response, but these parameters fully recovered within 6 days of exposure to this hyperosmotic environment with MCHC rising to exceed the level in freshwater fish. Zander did not survive rapid transfer to more hyperosmotic conditions (750 or 1001 mOsmol kg‐1, 26‐35 psu), but they did survive exposure to simulated‘tidal cycles’ of rising and declining salinity, peaking after 6 h at c. 29 or 33 psu. Although osmotic disturbance was apparent after 6 h exposure and other physiological parameters suggested both adrenergic and corticosteroid components of a stress response, rapid recovery was apparent after return to fresh water. The results indicate that the zander, a non‐indigenous species in the U.K., has a high level of osmotic tolerance and a degree of hypo‐osmoregulation in saline environments not found in most stenohaline freshwater teleosts. This osmoregulatory ability could enable invasion of new U.K. river systems by using inshore marine environments of low salinity as saltwater bridges.  相似文献   

11.
Quantitative samples of Acetes sibogae were collected at 2 hintervals for 48 h at three sites across the axis of a tidalestuary to examine their distribution within the water bodyover tidal and diel cycles, and to assess the role of behaviourin maintaining population distribution in estuarine/coastalwaters in relation to selected environmental factors. Watertemperature, salinity, tidal height and light intensity wereconcurrently measured. Distribution of the shrimp across theestuary was uniform and consistent between daylight or darkperiods, and among flood or ebb tides. Changes of A.sibogaeabundance were related to light and tidal cycles at each sitewith higher catches in dark periods and during flood tides.Acetes sibogae also exhibited both nocturnal and tidal verticalmovements in the water body, with greater numbers being onlyfound near-surface rather than near-bottom during flood tidesand at night. No significant differences in the distributionof size groups were found between any sampled levels of anysite. Acetes sibogae was highly aggregated in the water body.It is suggested that aggregating behaviour and tidal and nocturnalvertical movements act to facilitate population maintenancein estuarine/coastal waters.  相似文献   

12.
Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.  相似文献   

13.
Ramadan  T. 《Annals of botany》2001,87(2):259-266
Secretion of salts by bicellular salt glands and the water relationsof the grass Sporobolus spicatus were investigated at four sitesalong the coast of the Red Sea in Egypt that differed in theextremity of salinity and drought. Salt eliminated by the leaveswas similar in its composition at all sites. Na+and Cl-werethe dominant ions in the soil, and together comprised about93% of the dry weight of secreted salt. The molar ratio of K+:Na+inthe plant leaves was more than ten-fold that in the interstitialsoil solution and thirteen-times that in the secreted salts,reflecting the high selectivity of the secretion mechanism forNa+. The concentration of Na+in the solution transported tothe leaves between 0900 and 1500 h was less than 0.1% of thatin the soil solution. Accumulation of salts by the plant shoots,which increased with increasing soil salinity and drought, wasmaximal during the day when the extent of secretion greatlyreduced. The ionic osmotic potential (  相似文献   

14.
The estuarine bivalve Cerastoderma edule and the lagoonal C.glaucum were exposed in the laboratory to different salinityregimes and the effects in the osmotic concentration of themantle cavity liquid, extrapallial fluid and haemolymph determined.The behavioural responses of the two cockles to changing salinityand exposure to air were investigated by monitoring valve movements. Both C. edule and C. glaucum are euryhaline osmo-conformerswhen exposed to different environmental salinities, but differencesare seen in their behavioural responses to sudden exposure tolow salinity and cyclic changes in salinity. C. glaucum postponedthe effect of sudden exposure to low salinity by complete valveclosure whilst C. edule partially closed its valves and intermittentlygaped during the same period. During exposure to a sinusoidalfluctuating salinity regime, C. edule responded first to thefalling salinity by retracting siphons and partially closingvalves. In contrast, C. glaucum responded more slowly to fallingsalinity than did C. edule. C. glaucum closed valves faster,accompanied by erratic adductions. During an acclimation period in a continuous automatic tidalsystem, C. edule and C. glaucum were entrained to the tidalrhythm of immersion and exposure to air and demonstrated differentresponses of valve gaping and adductions. This rhythm was lostupon continuous submergence indicating the rhythm is exogenouslyinduced. The two cockles gaped during exposure to air at lowtide, suggesting that both can respire in air, contrary to previousreports. The different physiological and behavioural responses of C.edule and C. glaucum to changing salinity and exposure to airwere found to be a reflection of their respective environments.C. edule is adapted to daily changes and stresses in its estuarinehabitat whilst C. glaucum is subjected to seasonal changes. (Received 19 September 1985;  相似文献   

15.
Seasonal cycle of zooplankton southwest of Iceland   总被引:5,自引:0,他引:5  
Seasonal variations in biomass, abundance and species compositionof zooplankton in relation to environmental parameters and chlorophylla were studied in both the Coastal water [salinity] (S) <35.0  相似文献   

16.
Soil water cotent and salinity levels are seldom uniform inthe field, particularly with the use of micro-irrigation systemsthat may water only a portion of the root zone. For studyingnon-uniform salinity, a split-root experiment was designed toevaluate growth and water relations when half of the root systemof sour orange (Citrus aurantium) seedlings was stressed withsodium chloride (NaCl) or polyethylene glycol (PEG). This studyalso determined if non-stressed portions of the root systemcompensated for the decrease in water uptake by the stressedportions. One or both halves of the root system were treated for fourmonths with nutrient solution adjusted with NaCl or PEG to osmoticpotentials of –0.10, –0.20, or –0.35 MPa.Shoot dry weight was reduced by only 9% when half of the rootsystem was irrigated with saline solution at –0.10 MPa,but with both halves of the root system at –0.10 MPa,shoot and root dry weights were reduced as much as 45%. Similarly,leaf water and osmotic potentials were also more disturbed underuniform salinity than under non-uniform salinity conditions. Plant growth, leaf water potential, osmotic potential, stomatalconductance, and evapotranspiration decreased with increasingNaCl and PEG concentrations in the nutrient solution. Turgorpotential and leaf thickness increased in response to NaCl treatments.Microscopic examination showed that the increase in leaf thicknesswas due to the development of larger cells in the spongy mesophyll. Shoot growth did not correlate with the average osmotic potentialof the two root halves. Seedlings with one stressed half-rootsystem had shoot dry weight and leaf water potential valuescloser to those of the non-stressed control than to those withthe completely stressed root system. Key words: Non-uniform salinity, water relations, citrus  相似文献   

17.
The charophyte Lamprothamnium papulosum (Wallr.) J. Gr. is foundat salinities varying from nearly fresh water to twice thatof sea water. It can maintain its turgor constant at 302 mosmolkg–1 (0.73 MPa) when exposed to external osmotic pressuresof 550 to 1350 mosmol kg–1 (1.3–3.3 MPa). Turgorshows a tendency to rise slightly at lower osmotic pressure(388 mosmol kg–1 of turgor at 150 mosmol kg–1 externalosmolality). K+ and Cl are the main solutes in the vacuole,and are most important in controlling internal osmotic pressure.Mg2+, Ca2+, and SO2–4 are present in significant amountsbut their concentrations do not change with changes in externalsalinity. Na+ is present in lower concentration than K+, andplays a minor role in regulating turgor. Sucrose is presentin significant concentrations, but changes little with changesin salinity. Two enzymes involved in sucrose metabolism, sucrosephosphate synthetase (EC 2.4.1.14 [EC] ), and sucrose synthetase (EC2.4.1.13 [EC] ) are active in whole cell extracts of Lamprothamnium.As in the fresh water charophytes, Lamprothamnium membrane potentialmay be depolarized (close to EK) or hyperpolarized, and presumablyof electrogenic origin. Both types of potential are found atall salinities tested.  相似文献   

18.
R. F. Grant 《Plant and Soil》1995,172(2):309-322
There is a need to establish how root water uptake should be calculated under saline conditions, and to test calculated uptake against experimental data recorded under documented site conditions. In this study, the ecosystem simulation model ecosys was expanded to include an ion transfer-equilibrium-exchange model used to calculated electrical conductivity and osmotic potential. This expanded model was tested against experimental data for maize growth and water use reported under different irrigation and salinity levels at four different sites in the western U.S. to determine if salinity effects on crop growth and water use could be modelled from the effects of salinity on soil osmotic potential. The model was able to reproduce reductions in water use and phytomass yields on salinized (10 g total salts kg–1 water) soils that ranged from 10 to 50% of those on non-salinized controls. In general, these reductions increased with increasing irrigation deficits. These reductions arose in the model from reduced canopy water potentials and conductances caused by reduced osmotic potentials in the saline soils. The hypothesis that salinity effects on crop growth and water use are caused by salinity effects on soil osmotic potential appear to be supported under the range of conditions included in this study. Models such as ecosys that are based on general hypotheses for the effects of salinity upon biological activity may be well adapted for general use in assessing the effects of salinity on crop growth and water use with different soils, managements and climates.  相似文献   

19.
Hopewell B  Urban JP 《Biorheology》2003,40(1-3):73-77
Articular chondrocytes are exposed to a unique osmotic environment, which varies throughout the depth of cartilage, and in response to mechanical loading or pathological conditions. In light of such osmotic variations we investigated the response of chondrocytes cultured in alginate beads to long term hypo- and hyperosmotic challenge. Following pre-incubation at 380 mOsmol, exposure to hyperosmotic conditions (550 mOsmol) initially decreased 35S-sulphate incorporation, but after 24 hours of culture, rates had recovered and surpassed their original levels. MAP kinase inhibitors abrogated this response suggesting their involvement in the adaptation mechanism. Hypo-osmotic challenge caused a decrease in 35S-sulphate incorporation throughout the culture period. These results suggest that osmolality is a powerful regulator of macromolecular synthesis, and that perturbations in the osmotic environment may alter the set point for turnover.  相似文献   

20.
Beckett  R. P. 《Annals of botany》1995,76(2):211-217
Thermocouple psychrometry was used to investigate the waterrelations of eight species of lichens from sites of contrastingwater status. Lichens from exposed, dry habitats had lower thallusK concentrations but lower osmotic potentials than plants frommesic sites. As a result, K contributed a much smaller proportionto osmotic potential in plants from dry sites, suggesting thatlow cytoplasmic K concentrations are important for desiccationtolerance. While containing less water at saturation, plantsfrom dry habitats had lower thallus elastic moduli and lowerapoplastic water fractions. They therefore lost turgor at lowerrelative water contents than plants from wetter sites. The significanceof these results for the water relations of lichens is discussed.Copyright1995, 1999 Academic Press Lichen, desiccation, stress, thermocouple psychrometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号