首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have made xeroderma pigmentosum group A gene (XPA)-knockout mice (XPA(-/-) mice). The XPA(-/-) mice had no detectable activity for nucleotide excision repair (NER) and showed a high incidence of UVB-induced skin tumorigenesis. We have also found that cell lines derived from skin cancers in UVB-irradiated XPA(-/-) mice become tolerant to UV-irradiation and showed abnormal UV-induced cell cycle checkpoints and decreased mismatch repair (MMR) activity. These results suggested that the MMR-downregulation may help cells escape killing by UV-irradiation and thus MMR-deficient clones are selected for during the tumorigenic transformation of XPA(-/-) cells. In this report, we examined whether the incidence of UVB-induced skin tumorigenesis is enhanced in XPA(-/-)MSH2(-/-), XPA(-/-) and MSH2(-/-) mice when compared with that in wild-type mice. Our results indicate that the MSH2-deficiency caused a high incidence of spontaneous and UVB-induced skin tumorigenesis and the XPA and MSH2 genes have additive roles in the UV-induced skin tumorigenesis.  相似文献   

2.
Nucleotide excision repair (NER) removes a wide variety of lesions from the genome and is deficient in the genetic disorder, xeroderma pigmentosum (XP). In this paper, an in vitro analysis of the XP group A gene product (XPA protein) is reported. Results of an analysis on the pathogenesis of ultraviolet (UV)-B-induced skin cancer in the XPA gene-knockout mouse are also described: (1) contrary to wild type mice, significant bias of p53 mutations to the transcribed strand and no evident p53 mutational hot spots were detected in the skin tumors of XPA-knockout mice. (2) Skin cancer cell lines from UVB-irradiated XPA-knockout mice had a decreased mismatch repair activity and an abnormal cell cycle checkpoint, suggesting that the downregulation of mismatch repair helps cells escape killing by UVB and that mismatch repair-deficient clones are selected for during the tumorigenic transformation of XPA (-/-) cells. (3) The XPA-knockout mice showed a higher frequency of UVB-induced mutation in the rpsL transgene at a low dose of UVB-irradiation than the wild type mice. CC-->TT tandem transition, a hallmark of UV-induced mutation, was detected at higher frequency in the rpsL transgene in the XPA-knockout mice than the wild type mice. This rpsL/XPA mouse system will be useful for further analysing the role of NER in the mutagenesis induced by various carcinogens. (4) The UVB-induced immunosuppression was greatly enhanced in the XPA-knockout mice. It is possible that an enhanced impairment of the immune system by UVB irradiation is involved in the high incidence of skin cancer in XP.  相似文献   

3.
Nucleotide excision repair (NER) acts on a variety of DNA lesions, including damage induced by many chemotherapeutic drugs. Cancer therapy with such drugs might be improved by reducing the NER capacity of tumors. It is not known, however to what extent any individual NER protein is rate-limiting for any step of the repair reaction. We studied sensitivity to UV radiation and repair of DNA damage with regard to XPA, one of the core factors in the NER incision complex. About 150,000-200,000 molecules of XPA protein are present in NER proficient human cell lines, and no XPA protein in the XP-A cell line XP12RO. Transfected XP12RO cell lines expressing 50,000 or more XPA molecules/cell showed UV resistance similar to normal cells. Suppression of XPA protein to approximately 10,000 molecules/cell in a Tet-regulatable system modestly but significantly increased sensitivity to UV irradiation. No removal of cyclobutane pyrimidine dimers was detected in the SV40 immortalized cell lines tested. Repair proficient WI38-VA fibroblasts and transfected XP-A cells expressing 150,000 molecules of XPA/cell removed (6-4) photoproducts from the genome with a half-life of 1h. Cells in which XPA protein was reduced to about 10,000 molecules/cell removed (6-4) photoproducts more slowly, with a half-life of 3h. A reduced rate of repair of (6-4) photoproducts thus results in increased cellular sensitivity towards UV irradiation. These data indicate that XPA levels must be reduced to <10% of that present in a normal cell to render XPA a limiting factor for NER and consequent cellular sensitivity. To inhibit NER, it may be more effective to interfere with XPA protein function, rather than reducing XPA protein levels.  相似文献   

4.
The DNA of patients taking immunosuppressive and anti-inflammatory thiopurines contains 6-thioguanine (6-TG) and their skin is hypersensitive to ultraviolet A (UVA) radiation. DNA 6-TG absorbs UVA and generates reactive oxygen species that damage DNA and proteins. Here, we show that the DNA damage includes covalent DNA-protein crosslinks. An oligonucleotide containing a single 6-TG is photochemically crosslinked to cysteine-containing oligopeptides by low doses of UVA. Crosslinking is significantly more efficient if guanine sulphonate (G(SO3))--an oxidized 6-TG and a previously identified UVA photoproduct--replaces 6-TG, suggesting that G(SO3) is an important reaction intermediate. Crosslinking occurs via oligopeptide sulphydryl and free amino groups. The oligonucleotide-oligopeptide adducts are heat stable but are partially reversed by reducing treatments. UVA irradiation of human cells containing DNA 6-TG induces extensive heat- and reducing agent-resistant covalent DNA-protein crosslinks and diminishes the recovery of some DNA repair and replication proteins from nuclear extracts. DNA-protein crosslinked material has an altered buoyant density and can be purified by banding in cesium chloride (CsCl) gradients. PCNA, the MSH2 mismatch repair protein and the XPA nucleotide excision repair (NER) factor are among the proteins detectable in the DNA-crosslinked material. These findings suggest that the 6-TG/UVA combination might compromise DNA repair by sequestering essential proteins.  相似文献   

5.
We have generated transgenic mice by introducing copies of the E. coli O6-methylguanine-DNA methyltransferase gene, ada. Liver extracts from homozygotes demonstrate about three times the control enzyme activity and increase up to about eight-fold can be induced by treatment with zinc, since the metal-responsive metallothionein promoter is attached to the ada gene. Furthermore, studies of liver carcinogenesis in our transgenic mice demonstrated significantly reduced rates of development of hepatocellular tumors after treatment with dimethylnitrosamine or diethylnitrosamine. It is well known that xeroderma pigmentosum (XP) patients are deficient in DNA repair. The availability of XPA (XP group A complementing) knockout mice has enabled us to investigate the functional role of the XPA nucleotide excision repair gene in carcinogenesis in vivo, first using the mouse skin as a model system. XPA-/- mice demonstrated skin ulcers 5-7 days after 7,12-dimethylbenz[a]anthracene (DMBA) treatment and papilloma development within 4 weeks prior to promotion, skin tumor incidence being also much higher than in heterozygous and wild-type mice. Experiments targeting the lung, liver and tongue have also been conducted to answer the question of whether the internal organs of these mice are also susceptible to chemical carcinogens. For lung carcinogenesis, mice were instilled intratracheally with a small dose of benzo[a]pyrene. The pulmonary tumor incidence in XPA-/- mice was significantly higher than in XPA+/- and XPA+/+ mice. XPA-/- mice were also found to be have enhanced sensitivity to aflatoxin B1 regarding liver tumor induction. In addition, administration of 4-nitroquinoline-1-oxide in drinking water for 50 weeks resulted in tongue tumors only in XPA-/- mice. These studies, thus, provided convincing evidence that XPA mice are also sensitive to carcinogenesis in organs other than the skin.  相似文献   

6.
XPA repair protein is absolutely needed for nucleotide excision repair (NER). It preferentially binds UV-irradiated DNA in vitro and possibly takes place in the recognition of pyrimidine dimers, the main type of UV-lesions in DNA. Using immunofluorescent microscopy and immunoblotting technique we have found that XPA protein is fully extractable by Triton X-100 solution from non-irradiated normal human fibroblasts, but after UV-irradiation its extractability decreases in UV-dose dependent manner. UV-induced XPA-immobilization was observed in human cell lines with different types of repair defects, but XPA-extractability from unirradiated cells of these lines was significantly lower in comparison with normal fibroblasts. These data do not permit to make conclusion concerning the distinct connection of this phenomenon with different pathways of NER. Histone deacetylase inhibitor, sodium butyrate, did not change the level of extractability in unirradiated and UV-irradiated normal human cells and CHO cells, defective in global genome repair, that indicated the independence of XPA-immobilization from the level of histone acetylation. It was established with the help of confocal microscopy that XPA-foci in detergent-treated UV-irradiated cell were partially colocalized with the focal sites of PCNA, an auxiliary protein of DNA polymerases delta and epsilon. It may mean that a part of detergent-resistant XPA foci correspond to DNA repair synthesis sites, but the major part of immobilized XPA reflects the early step of repair proteins assembly formation needed for the repair of the lesions.  相似文献   

7.
8.
9.
Centrosome amplification is frequently observed in tumour cells exposed to genotoxic stress, however the underlying mechanisms and biological consequences are poorly understood. Here, we show that the anti-metabolite and alkylating agent 6-thioguanine (6-TG) induces centrosome amplification resulting in the formation of multi-polar spindles when damaged cells subsequently enter mitosis. These aberrant, multi-polar mitoses are frequently resolved by asymmetric cell divisions causing unequal segregation of genetic material and cell death in one or both daughter products. We show that this phenomenon is associated with transient cell cycle delay in S- and G2-phase and is dependent on DNA mismatch repair (DNA MMR) proficiency and Chk1 protein kinase activity. Although Chk1-deficient cells do not exhibit cell cycle delay, centrosome amplification, or multi-polar spindle formation, continued cell cycle progression in the presence of 6-TG eventually results in increased levels of mitotic catastrophe, most probably due to mitosis with incompletely replicated DNA. Taken together, these results reveal novel mechanisms of cell killing by 6-TG and underscore the importance of interactions between cell cycle checkpoints and DNA MMR in determining the fate of cells bearing DNA damage.  相似文献   

10.
11.
12.
DNA mismatch repair (MMR) deficiency in human cancers is associated with resistance to a spectrum of clinically active chemotherapy drugs, including 6-thioguanine (6-TG). We and others have shown that 6-TG-induced DNA mismatches result in a prolonged G2/M cell cycle arrest followed by apoptosis in MMR(+) human cancer cells, although the signaling pathways are not clearly understood. In this study, we found that prolonged (up to 4 days) treatment with 6-TG (3microM) resulted in a progressive phosphorylation of Chk1 and Chk2 in MMR(+) HeLa cells, correlating temporally with a drug-induced G2/M arrest. Transfection of HeLa cells with small interfering RNA (siRNA) against the ataxia telangiectasia-related (ATR) kinase or against the Chk1 kinase destroyed the G2/M checkpoint and enhanced the apoptosis following 6-TG treatment. On the other hand, the induction of a G2/M population by 6-TG was similar in ATM(-/-) and ATM(+) human fibroblasts, suggesting that the ATM-Chk2 pathway does not play a major role in this 6-TG response. Our results indicate that 6-TG DNA mismatches activate the ATR-Chk1 pathway in the MMR(+) cells, resulting in a G2/M checkpoint response  相似文献   

13.
14.
Nucleotide excision repair (NER) is the only mechanism in humans to repair UV-induced DNA lesions such as pyrimidine (6-4) pyrimidone photoproducts and cyclobutane pyrimidine dimers (CPDs). In response to UV damage, the ataxia telangiectasia mutated and Rad3-related (ATR) kinase phosphorylates and activates several downstream effector proteins, such as p53 and XPA, to arrest cell cycle progression, stimulate DNA repair, or initiate apoptosis. However, following the completion of DNA repair, there must be active mechanisms that restore the cell to a prestressed homeostatic state. An important part of this recovery must include a process to reduce p53 and NER activity as well as to remove repair protein complexes from the DNA damage sites. Since activation of the damage response occurs in part through phosphorylation, phosphatases are obvious candidates as homeostatic regulators of the DNA damage and repair responses. Therefore, we investigated whether the serine/threonine wild-type p53-induced phosphatase 1 (WIP1/PPM1D) might regulate NER. WIP1 overexpression inhibits the kinetics of NER and CPD repair, whereas WIP1 depletion enhances NER kinetics and CPD repair. This NER suppression is dependent on WIP1 phosphatase activity, as phosphatase-dead WIP1 mutants failed to inhibit NER. Moreover, WIP1 suppresses the kinetics of UV-induced damage repair largely through effects on NER, as XPD-deficient cells are not further suppressed in repairing UV damage by overexpressed WIP1. Wip1 null mice quickly repair their CPD and undergo less UV-induced apoptosis than their wild-type counterparts. In vitro phosphatase assays identify XPA and XPC as two potential WIP1 targets in the NER pathway. Thus WIP1 may suppress NER kinetics by dephosphorylating and inactivating XPA and XPC and other NER proteins and regulators after UV-induced DNA damage is repaired.  相似文献   

15.
16.
Base-excision (BER) and nucleotide-excision (NER) repair play pivotal roles in protecting the genomes of dividing cells from damage by endogenous and exogenous agents (i.e. environmental genotoxins). However, their role in protecting the genome of post-mitotic neuronal cells from genotoxin-induced damage is less clear. The present study examines the role of the BER enzyme 3-alkyladenine DNA glycosylase (AAG) and the NER protein xeroderma pigmentosum group A (XPA) in protecting cerebellar neurons and astrocytes from chloroacetaldehyde (CAA) or the alkylating agent 3-methyllexitropsin (Me-Lex), which produce ethenobases or 3-methyladenine (3-MeA), respectively. Neuronal and astrocyte cell cultures prepared from the cerebellum of wild type (C57BL/6) mice or Aag(-/-) or Xpa(-/-) mice were treated with 0.1-50 microM CAA for 24h to 7 days and examined for cell viability, DNA fragmentation (TUNEL labeling), nuclear changes, and glutathione levels. Aag(-/-) neurons were more sensitive to the acute (>20 microM) and long-term (>5 microM) effects of CAA than comparably treated wild type neurons and this sensitivity correlated with the extent of DNA fragmentation and nuclear changes. Aag(-/-) neurons were also sensitive to Me-Lex at comparable concentrations of CAA. In contrast, Xpa(-/-) neurons were more sensitive than either wild type or Aag(-/-) neurons to CAA (>10 microM), but less sensitive than Aag(-/-) neurons to Me-Lex. Astrocytes from the cerebellum of wild type, Aag(-/-) or Xpa(-/-) mice were essentially insensitive to CAA at the concentrations tested. These studies demonstrate that BER and NER are required to protect neurons from genotoxin-induced cell death.  相似文献   

17.
Initial recognition of DNA damage is the crucial but poorly understood first step in DNA repair by the human nucleotide excision repair(NER) and mismatch repair (MMR) systems. Failure by NER or MMR to recognize DNA damage threatens the genetic integrity of the organism and may play a role in carcinogenesis. Both NER and MMR recognize and repair a wide variety of structurally dissimilar lesions against the background of normal DNA. Previous studies have suggested that detection of thermodynamic destabilization of DNA caused by covalent damage and base mismatches is a potential mechanism by which repair pathways with broad specificity such as NER and MMR recognize their substrates. However, both NER and MMR respectively, repair a wide variety of stabilizing and destabilizing covalent DNA lesions and base pair mismatches. A common feature of lesions that are both thermodynamically stabilizing and destabilizing is the alteration of the local DNA flexibility (dynamics). In this review we describe the experimental evidence for altered dynamics from NMR and thermodynamic studies on normal and damaged DNA molecules with respect to recognition by NER and MMR. Based on these data, we propose a model for initial detection of lesions by both NER and MMR that occurs through an indirect readout mechanism of alternative DNA conformations induced by covalent damage and base mismatches.  相似文献   

18.
Metastatic cancer in adults usually has a fatal outcome. In contrast, advanced testicular germ cell tumours are cured in over 80% of patients using cisplatin-based combination chemotherapy [1]. An understanding of why these cells are sensitive to chemotherapeutic drugs is likely to have implications for the treatment of other types of cancer. Earlier measurements indicate that testis tumour cells are hypersensitive to cisplatin and have a low capacity to remove cisplatin-induced DNA damage from the genome [2] [3]. We have investigated the nucleotide excision repair (NER) capacity of extracts from the well-defined 833K and GCT27 human testis tumour cell lines. Both had a reduced ability to carry out the incision steps of NER in comparison with extracts from known repair-proficient cells. Immunoblotting revealed that the testis tumour cells had normal amounts of most NER proteins, but low levels of the xeroderma pigmentosum group A protein (XPA) and the ERCC1-XPF endonuclease complex. Addition of XPA specifically conferred full NER capacity on the testis tumour extracts. These results show that a low XPA level in the testis tumour cell lines is sufficient to explain their poor ability to remove cisplatin adducts from DNA and might be a major reason for the high cisplatin sensitivity of testis tumours. Targeted inhibition of XPA could sensitise other types of cells and tumours to cisplatin and broaden the usefulness of this chemotherapeutic agent.  相似文献   

19.
Choudhury S  Pan J  Amin S  Chung FL  Roy R 《Biochemistry》2004,43(23):7514-7521
trans-4-Hydroxynonenal (HNE) is a major peroxidation product of omega-6 polyunsaturated fatty acids. The reaction of HNE with DNA produces four diastereomeric 1,N(2)-gamma-hydroxypropano adducts of deoxyguanosine (HNE-dG); background levels of these adducts have been detected in tissues of animals and humans. There is evidence to suggest that these adducts are mutagenic and involved in liver carcinogenesis in patients with Wilson's disease and in other human cancers. Here, we present biochemical evidence that in human cell nuclear extracts the HNE-dG adducts are repaired by the nucleotide excision repair (NER) pathway. To investigate the recognition and repair of HNE-dG adducts in human cell extracts, we prepared plasmid DNA substrates modified by HNE. [(32)P]-Postlabeling/HPLC determined that the HNE-dG adduct levels were approximately 1200/10(6) dG of plasmid DNA substrate. We used this substrate in an in vitro repair-synthesis assay to study the complete repair of HNE-induced DNA adducts in cell-free extracts. We observed that nuclear extracts from HeLa cells incorporated a significant amount of alpha[(32)P]dCTP in DNA that contained HNE-dG adducts by comparison with UV-irradiated DNA as the positive control. Such repair synthesis for UV damage or HNE-dG adducts did not occur in XPA cell nuclear extracts that lack the capacity for NER. However, XPA cells complemented with XPA protein restored repair synthesis for both of these adducts. To verify that HNE-dG adducts in DNA were indeed repaired, we measured HNE-dG adducts in the post-repaired DNA substrates by the [(32)P]-postlabeling/HPLC method, showing that 50-60% of HNE-dG adducts were removed from the HeLa cell nuclear extracts after 3 h at 30 degrees C. The repair kinetics indicated that the excision rate is faster than the rate of gap-filling/DNA synthesis. Furthermore, the HNE-dG adduct isomers 2 and 4 appeared to be repaired more efficiently at early time points than isomers 1 and 3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号