首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Villin, a calcium-regulated actin-binding protein, modulates the structure and assembly of actin filaments in vitro. It is organized into three domains, the first two of which are homologous. Villin is mainly produced in epithelial cells that develop a brush border and which are responsible for nutrient uptake. Expression of the villin structural gene is precisely regulated during mouse embryogenesis and is restricted in adults, to certain epithelia of the gastrointestinal and urogenital tracts. The function of villin has been assessed by transfecting CV1 cells with a human cDNA encoding wild-type villin or mutant villin. Synthesis of large amounts of villin in cells which do not normally produce this protein induces the growth of microvilli on the cell surface and the redistribution of F-actin, concomitant with the disappearance of stress fibers. The complete villin sequence is required for the morphogenic effect. These results suggest that villin plays a key role in the morphogenesis of microvilli.  相似文献   

3.
Villin is an evolutionarily well conserved, Ca2+ regulated actin-binding protein, and a major structural component of the brush border of specialized absorptive cells. Using paraffin sections and an affinity purified polyclonal anti-villin antibody, we have investigated the early expression of villin during mouse embryogenesis. Villin is first detectable at the early post-implantation stage in visceral endodermal cells at the periphery of the egg cylinder. In this extra embryonic layer, the expression of villin increases and then persists until full term gestation. In the embryo, villin first appears in gut anlage during the axial rotation. Using the same methodology, villin expression is also demonstrated in differentiating embryoid bodies from a teratocarcinoma. Both in extra embryonic and embryonic extracts, villin expression is confirmed by immunoblot and Northern blot analysis which reveal, respectively, a single polypeptide of 93 kd and an mRNA of 3.4 kb in length, two well defined parameters for adult mouse villin gene expression. The results presented here show that paraffin sections allow very sensitive and highly resolutive detection of antigens in early embryogenesis. They provide a detailed developmental profile of villin expression and demonstrate the usefulness of villin as a marker for epithelial cells involved in absorptive processes.  相似文献   

4.
The apical surface of transporting epithelia is specially modified to absorb nutrients efficiently by amplifying its surface area as microvilli. Each microvillus is supported by an underlying core of bundled actin filaments. Villin and fimbrin are two actin-binding proteins that bundle actin filaments in the intestine and kidney brush border epithelium. To better understand their function in the assembly of the cytoskeleton during epithelial differentiation, we examined the pattern of villin and fimbrin expression in the developing mouse using immunofluorescence and immunoelectron microscopy. Villin is first detected at day 5 in the primitive endoderm of the postimplantation embryo and is later restricted to the visceral endoderm. By day 8.5, villin becomes redistributed to the apical surface in the visceral endoderm, appearing in the gut at day 10 and concentrating in the apical cytoplasm of the differentiating intestinal epithelium 2-3 days later. In contrast, fimbrin is found in the oocyte and in all tissues of the early embryo. In both the visceral endoderm and gut epithelium, fimbrin concentrates at the apical surface 2-3 days after villin; this redistribution occurs when the visceral endoderm microvilli first contain organized microfilament bundles and when microvilli first begin to appear in the gut. These results suggest a common mechanism of assembly of the absorptive surface of two different tissues in the embryo and identify villin as a useful marker for the visceral endoderm.  相似文献   

5.
Summary Brush borders which are localized at the apical face of enterocytes, are composed of thousands of stiff microvilli containing bundles of microfilaments made of actin. Their assembly occurs during terminal differentiation of the enterocytes when these cells migrate along the villus of the intestinal mucosa. The cell line HT 29 derived from a human colonic adenocarcinoma whose differentiation can be induced, can also be used as a model to study in culture the assembly of the intestinal brush border.Villin is one of the actin binding proteins found in microvilli which compose brush borders. Villin is expressed in the adult and in the embryo before the appearance of the brush border. Villin can be used as a tissue-specific marker for normal diffentiated and undifferentiated cells derived from gastrointestinal tractus in the adult as well as in the embryo. Since villin is a good marker for intestinal cells and plays a structural role in the assembly of the brush border we have analysed its expression and its localization in HT 29 cells. In HT 29 cells, as in the tissue, villin is synthesized at low levels before the appearance of the brush border. The high rate of synthesis and the recruitement of villin at the apical pole of the cells can be correlated with the existence of a well developed brush border.  相似文献   

6.
Techniques using microdissected tubules from rabbit kidney allow the isolation of well defined segments which can be cultured to obtain pure renal cell epithelia. From microdissected proximal tubules, we obtained epithelia the cells of which exhibit some of the antigenic expressions of the initial proximal cells. For this purpose, we used three monoclonal antibodies raised against apical brush border membranes of the proximal tubules. We determined with precision the identity and some of the molecular characteristics of the antigens bound by these three antibodies and found that they correspond to three hydrolases present in the brush borders of proximal renal cells (amino-peptidase, dipeptidyl-peptidase IV and endopeptidase). These apical markers are expressed by the growing cells of primary cultures from proximal tubules, suggesting strongly that they are effectively proximal cells and that no appreciable dedifferentiation occurred during the growth process. We have also shown that apical expression of these hydrolases on the plasma membrane of the epithelium occurred only after several days of culture and determined the complete polarization of the cells. Electron microscopy studies confirmed the degree of polarization of the cultured cells by the presence of numerous microvilli on their apical face.  相似文献   

7.
An electron microscopy study was aimed to correlate structural differentiation of the epithelium in mesonephric proximal tubules (PT) with the expression of membrane activities of alkaline phosphatase (AP) and 5'-nucleotidase (AMP). Tissue samples of mesonephros were taken from 5 to 16 days old chick embryos. Both enzymes were detected with cerium technique, Mayahara modification of lead capture method was used also for localization of AP. Control incubation was performed with levamisole. The formation of absorptive apparatus was characterized by the differentiation of PT epithelium. Activities of AP and AMP appeared to increase rapidly with the differentiation of epithelium. Reaction products of AP and AMP were detected on brush border as well as on membranes of tubular invaginations, transport tubules and endocytotic vacuoles. The basolateral cell surfaces of epithelium were projected in short interdigitating microvilli and the expression of AP and AMP activities on their membranes suggested the transport role of this structural specialization.  相似文献   

8.
Fractions highly enriched in plasma membrane, endoplasmic reticulum or brush border were prepared from homogenized rat kidney cortex. Kallikrein was concentrated in the plasma-membrane fraction, but not in the brush border of the proximal tubules. Kininase II or angiotensin I-converting enzyme was localized in the brush-border membrane. It is suggested that kallikrein in the urine may originate from the plasma membrane of the distal tubules and the conversion of angiotensin I and the inactivation of bradykinin may occur on the lumen membrane of the proximal tubular cells.  相似文献   

9.
10.
Summary The renal tubules of the paired pronephros in early larvae (ammocoetes) of two lamprey species, Lampetra fluviatilis and Petromyzon marinus, were studied by use of light-, scanning- and transmission electron microscopy. They consist of (1) a variable number of pronephric tubules (3 to 6), and (2) an excretory duct. By fine-structural criteria, the renal tubules can be divided into 6 segments. Each pronephric tubule is divided into (1) the nephrostome and (2) the proximal tubule, the excretory duct consisting of (3) a common proximal tubule followed by (4) a short intermediate segment, and then by a pronephric duct composed of (5) a cranial and (6) a caudal section. The epithelium of the nephrostome displays bundles of cilia. The cells of the proximal tubule possess a brush border, many endocytotic organelles and a system of canaliculi (tubular invaginations of the basolateral plasmalemma). The same characteristics are encountered in the epithelium of the common proximal tubule; however, the number of these specific organelles decreases along the course of this segment in a posterior direction. In the intermediate segment, the epithelium appears structurally nonspecialized. The cells of the cranial pronephric duct lack a brush border; they have an extensive system of canaliculi and numerous mitochondria. The caudal pronephric duct is lined by an epithelium composed of light and dark cells; the latter are filled with mitochondria and the former contain mucus granules beneath the luminal plasmalemma. The tubular segments found in the pronephros are the same in structure and sequence as in the lamprey opisthonephroi. However, only the nephrostomes and proximal tubules occur serially in the pronephros, while the common proximal tubule, the intermediate segment and the cranial pronephric duct form portions of a single excretory duct.This paper is dedicated to the memory of Professor W. Bargmann, long-time editor of Cell and Tissue Research, the author of a splendid review on the structure of the vertebrate kidney and a master of German scientific writing.  相似文献   

11.
Summary Techniques using microdissected tubules from rabbit kidney allow the isolation of well defined segments which can be cultured, to obtain pure renal cell epithelia. From microdissected proximal tubules, we obtained epithelia the cells of which exhibit some of the antigenic expressions of the initial proximal cells. For this purpose, we used three monoclonal antibodies raised against apical brush border membranes of the proximal tubules. We determined with precision the identity and some of the molecular characteristics of the antigens bound by these three antibodies and found that they correspond to three hydrolases present in the brush borders of proximal renal cells (amino-peptidase, dipeptidyl-peptidase IV and endopeptidase). These apical markers are expressed by the growing cells of primary cultures from proximal tubules, suggesting strongly that they are effectively proximal cells and that no appreciable dedifferentiation occured during the growth process. We have also shown that apical expression of these hydrolases on the plasma membrane of the epithelium occured only after several days of culture and determined the complete polarization of the cells. Electron microscopy studies confirmed the degree of polarization of the cultured cells by the presence of numerous microvilli on their apical face.  相似文献   

12.
Abstract. The distribution of the mRNA encoding for villin, the major actin-binding protein of intestinal brush border, was studied during the differentiation of mouse intestinal epithelial cells and compared to the distribution of the protein. In situ hybridization using a cRNA clone specific for villin indicated that the distribution of the mRNA did not fully parallel that of the protein, although the overall labeling pattern for mRNA and protein along the crypt-villus axis was similar. While villin was present in equal amounts in all cells along the villi, villin-specific mRNA was mainly accumulated in the cells at the villus base, the area of the epithelium where terminal differentiation takes place and where the brush border is formed.  相似文献   

13.
Morphology of the pronephros of the juvenile brown trout, Salmo trutta   总被引:1,自引:0,他引:1  
The pronephros in juvenile brown trout (Salmo trutta) consists of a large ovoid renal corpuscle and a pair of tubules. The corpuscle is retained for 11 months, after which the glomerulus regresses. The glomerular arteries come directly from the dorsal aorta. The interstitium is permeated with venous blood vessels that arise from the anterior cardinal veins and are closely apposed to the tubules. Two distinct segments of the pronephric tubular system are distinguished by the histological and ultrastructural features of their component cells: 1) a short, transitional neck in which cells change from capsular epithelium to columnar epithelium, typical of tubules; 2) the convoluted segment composed of cells similar to first proximal tubular cells of the opisthonephros with well-formed brush borders, apical vesicles that vary in size and number along this segment, and lysosomes. Pinocytosis and exocytosis are also evident in this segment. The tubular system increases in length and in its convolutions until about week 9, when the opisthonephros develops. Distally each tubule connects with a Wolffian duct, with cells marked by the absence of apical inclusions and the presence of a uniform brush border, numerous mitochondria, and elaborate infolding of the basalar membrane. Nephrostomes, which are often characteristic of pronephroi, are not present. Cells with long cilia are found throughout the tubular system but are most characteristic of the neck and Wolffian-duct segments.  相似文献   

14.
Cytoskeletal proteins of the rat kidney proximal tubule brush border   总被引:3,自引:0,他引:3  
Cytoskeletal components backing the brush border of the rat kidney proximal tubule cell were identified and compared with those of the well characterized intestinal brush border by immuneoverlay and immunocytochemistry. Antibodies reactive against the intestinal microvillus core components, villin and fimbrin, as well as against the terminal web components, spectrin (fodrin) and myosin, were used. Proteins of similar molecular weight to these intestinal brush border cytoskeletal components were identified in isolated kidney brush borders by immuneoverlay. Spectrin, a major component of the terminal web region of both cell types, was more concentrated in the kidney brush border relative to both actin and myosin. By immunofluorescence, villin and fimbrin were localized in the microvilli, and spectrin and myosin were localized to the terminal web region of the brush border. In addition, spectrin was found along the basolateral membranes of the proximal tubule cell, and myosin was detected in a punctate staining pattern throughout its cytoplasm. By immunoelectron microscopy using immunogold labeling procedures, fimbrin and villin were localized in the terminal web as well as in microvilli, and spectrin and myosin were localized to fibrils in the terminal web. A key difference between the epithelia of the two organs is the extensive network of clathrin coated pits found in the terminal web region of the kidney but not the intestinal brush border. The clathrin-rich terminal web region of the kidney, like the intestinal brush border, proved to be quite stable and resistant to disruption by non-ionic detergents and harsh mechanical treatment.  相似文献   

15.
Ellis LC  Youson JH 《Tissue & cell》1991,23(3):393-410
Embryos of lampreys Petromyzon marinus were obtained through a technique of artificial fertilization. Samples of developmental intervals to the prolarval stage were prepared for transmission electron microscopy and the pronephros was examined. The pronephros was visible in the cardiac region of the coelom prior to the time of hatching of embryos and consisted of a renal corpuscle, nephrostomes, and proximal tubules connected to a pronephric duct. The renal corpuscle was comprised of poorly-defined vascular channels and a visceral epithelium of yolk-filled cells, the podocytes, with short major processes and pedicels resting on a basal lamina. The first proximal tubules possessed a delicate brush border of short microvilli but subsequent cellular differentiation yielded cells with all the components required for the process of endocytosis, a process which was demonstrated by uptake of the tracer, horseradish peroxidase. The distal tubules appeared later in development and were noted for abundant mitochondria and an extensive smooth tubular network. The timing of differentiation of various components of the nephron corresponds to that seen during morphogenesis of other vertebrate kidneys.  相似文献   

16.
The localization of gamma-Glutamyltransferase (gamma-GT, E.C.2.3.2.2) was studied on isolated tubular fragments from rat kidney cortex immunocytochemically. Monospecific antibodies raised in the goat against rat kidney gamma-GT were used. Antigoat immunoglobulin from the rabbit conjugated with ferritin was used for visualisation of the antibody binding sites. The enzyme was found to be localized at the brush border membrane of proximal tubules, the luminal membrane of distal tubules and collecting duct segments. The enzyme could further be localized on the antiluminal or basolateral cell membranes of proximal and distal tubular fragments, whereas no such localization was verified for collecting duct segments. The role of this basolateral gamma-GT localization in context with the kidney's ability to extract over 83% of the renal arterial glutathione (GSH) input during a single passage is discussed.  相似文献   

17.
The renal corpuscles of adult, C3H Swiss, male mice contain testosterone-sensitive, columnar cells in the parietal layer of Bowman's capsule. A study of the normal fine structure of these cells reveals several distinctive characteristics: a microvillous brush border; apical tubular invaginations and apical tubules; an elaborate infolding of the basal surface membrane forming cellular compartments, which contain numerous mitochondria; and a complex group of membrane-limited cytoplasmic inclusions. This appearance is remarkably similar to the fine structure of cells in the proximal convoluted tubule. 1 hr after an in vivo injection of horseradish peroxidase, numerous protein-absorption droplets occur in the columnar cell cytoplasm. The speed and cytomorphology of protein transport by these capsular cells closely resemble the handling of peroxidase by the proximal convoluted tubule. Origins for these testosterone-sensitive cells are discussed briefly. Morphological evidence is presented for the differentiation of squamous cells in Bowman's parietal capsule into columnar cells, which appear structurally and functionally identical with proximal convoluted tubular epithelium.  相似文献   

18.
19.
The vomeronasal organ (VNO) of the mammal nose is specialized to detect pheromones. The presumed site of the chemosensory signal transduction of pheromones is the vomeronasal brush border of the VNO sensory epithelium, which has been shown to contain two different sets of microvilli: (i) the tall microvilli of supporting cells and (ii) the short microvilli of the chemoreceptive VNO neurons that branch and intermingle with the basal portions of the longer supporting cell microvilli. A key problem when studying the subcellular distribution of possible VNO signal transduction molecules at the light microscope level is the clear discrimination of immunosignals derived from dendritic microvilli of the VNO neurons and surrounding supporting cell structures. In the present study we therefore looked for cytoskeletal marker proteins, that might help to distinguish at the light microscope level between the two sets of microvilli. By immunostaining we found that the VNO dendritic microvilli can be selectively labelled with antibodies to the calcium-sensitive actin filament-bundling protein villin, whereas supporting cell microvilli contain the actin filament cross-linking protein fimbrin, but not villin. Useful cytoplasmic marker molecules for cellular discrimination were cytokeratin 18 for supporting cells and β-tubulin for dendrites of VNO neurons. A further finding was that the non-sensory epithelium of the rat VNO contains brush cells, a cell type that appears to be involved in certain aspects of chemoreception in the gut. Brush cells or other structures of the vomeronasal brush border did not contain α-gustducin.  相似文献   

20.
An iron chelate, ferric nitrilotriacetate (Fe3+-NTA), is nephrotoxic and also carcinogenic to the kidney in experimental animals. Iron-promoted lipid peroxidation in the proximal tubules is thought to be responsible for the pathologic process. In the present study, iron-promoted lipid peroxidation, with thiobarbituric acid (TBA) formation as an indication, in the tubular surface was simulated in vitro using rat kidney brush border membrane vesicles and the results were compared with those using linoleate micelles and rat liver microsomal lipid liposomes. Addition of ascorbate, cysteine, or dithiothreitol to the Fe3+-NTA solution resulted in consumption of dissolved oxygen and promoted the lipid peroxidation in the micelles and in the liposomes. In contrast, addition of glutathione to the Fe3+-NTA solution caused only sluggish oxygen consumption and far less peroxidation in these lipid systems. When the brush border membrane vesicles were used for the peroxidation substrate, Fe3+-NTA and glutathione could promote TBA formation at a rate comparable to that elicited by Fe3+-NTA with cysteine or dithiothreitol. Acivicin, a gamma-glutamyl transpeptidase inhibitor, suppressed the peroxidation of the brush border membrane vesicles promoted by Fe3+-NTA and glutathione. These results suggest the following mechanism of proximal tubular cell lipid peroxidation promoted by Fe-NTA: Fe3+-NTA filtered through glomeruli is rapidly reduced by cysteine and Fe2+-NTA starts lipid peroxidation at the site, leading to proximal tubular necrosis. Cysteine is amply supplied by the decomposition of glutathione within the lumen by the action of gamma-glutamyl transpeptidase and dipeptidase situated at the proximal tubular brush border membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号