首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Physical separation of soil into different soil organic matter (SOM) fractions is widely used to identify organic carbon pools that are differently stabilized and have distinct chemical composition. However, the mechanisms underlying these differences in stability and chemical composition are only partly understood. To provide new insights into the stabilization of different chemical compound classes in physically-separated SOM fractions, we assessed shifts in the biomolecular composition of bulk soils and individual particle size fractions that were incubated in the laboratory for 345 days. After the incubation, also the incubated bulk soil was fractionated. The chemical composition of organic matter in bulk soils and fractions was characterized by 13C-CPMAS nuclear magnetic resonance spectroscopy and sequential chemical extraction followed by GC/MS measurements. Plant-derived lipids and lignin were abundant in particulate organic matter (POM) fractions of sand-, silt-, and clay-size and the mineral-bound, clay-sized organic matter. These results indicate that recent conceptualizations of SOM stabilization probably understate the contribution of plant-derived organic matter to stable SOM pools. Although our data indicate that inherent recalcitrance could be important in soils with limited aggregation, organo-mineral interactions and aggregation were responsible for long-term SOM stabilization. In particular, we observed consistently higher concentrations of plant-derived lipids in POM fractions that were incubated individually, where aggregates were disrupted, as compared to those incubated as bulk soil, where aggregates stayed intact. This finding emphasizes the importance of aggregation for the stabilization of less ‘recalcitrant’ biomolecules in the POM fractions. Because also the abundance of lipids and lignin in clay-sized, mineral-associated SOM was substantially influenced by aggregation, the bioavailability of mineral-associated SOM likely increases after the destruction of intact soil structures.  相似文献   

2.
Global change contributes to the retreat of glaciers at unprecedented rates. The deglaciation facilitates biogeochemical processes on glacial deposits with initiating soil formation as an important driver of evolving ecosystems. The underlying mechanisms of soil formation and the association of soil organic matter (SOM) with mineral particles remain unclear, although further insights are critical to understand carbon sequestration in soils. We investigated the microspatial arrangement of SOM coatings at intact soil microaggregate structures during various stages of ecosystem development from 15 to >700 years after deglaciation in the proglacial environment of the Damma glacier (Switzerland). The functionally important clay‐sized fraction (<2 μm) was separated into two density fractions with different amounts of organo‐mineral associations: light (1.6–2.2 g/cm3) and heavy (>2.2 g/cm3). To quantify how SOM extends across the surface of mineral particles (coverage) and whether SOM coatings are distributed in fragmented or connected patterns (connectivity), we developed an image analysis protocol based on nanoscale secondary ion mass spectrometry (NanoSIMS). We classified SOM and mineral areas depending on the 16O?, 12C?, and 12C14N? distributions. With increasing time after glacial retreat, the microspatial coverage and connectivity of SOM increased rapidly. The rapid soil formation led to a succession of patchy distributed to more connected SOM coatings on soil microaggregates. The maximum coverage of 55% at >700 years suggests direct evidence for SOM sequestration being decoupled from the mineral surface, as it was not completely masked by SOM and retained its functionality as an ion exchange site. The chemical composition of SOM coatings showed a rapid change toward a higher CN:C ratio already at 75 years after glacial retreat, which was associated with microbial succession patterns reflecting high N assimilation. Our results demonstrate that rapid SOM sequestration drives the microspatial succession of SOM coatings in soils, a process that can stabilize SOM for the long term.  相似文献   

3.
Soil organic matter (SOM) is the largest terrestrial C pool, and retention and release of dissolved organic matter (DOM) cause formation and loss of SOM. However, we lack information on how different sources of DOM affect its chemical composition, and how DOM chemical composition affects retention. We studied seasonal controls on DOM production and chemical controls on retention in soils of a temperate coniferous forest. The O horizon was not usually the dominant source for dissolved organic C (DOC) or N (DON) as has been reported for other sites. Rather, net production of both DOC and DON was often greater in the shallow mineral soil (0–10 cm) than in the O horizon. DOM production in the shallow mineral soil may be from root exudation as well as turnover of fine roots and microflora in the rhizosphere. In the field, the two acid fractions (hydrophobic and hydrophilic acids) dominated the soil solution at all depths. A major portion of net production and removal of total DOC within the soil column was explained by increases and decreases in these fractions, although a shift in chemical composition of DOM between the O and mineral soil horizons suggested different origins of DOM in these layers. A larger loss of the free amino fraction to deep soil water at this study site than at other sites suggested lower retention of labile DON. Field DOM removal measurements suggest that field-measured parameters may provide a good estimate for total DOM retained in mineral soil.  相似文献   

4.
Variations of soil moisture conditions affect sorption properties of soil organic matter and the pore size distribution of the soils and thus are expected to have an impact on the availability of pollutants and nutrients in soils. At least two principal processes that occur when a soil-water contact is established, are involved. Wetting, which is the very first step, is governed by the interactions of water with the surface of soil organic matter (SOM). The wettability of the pore walls determines the pore accessibility for water. Only in wettable soils, water will occupy the smallest pores first. In the course of wetting, the wettability of the pore walls increases, leading to water redistribution. Swelling of SOM is accompanied by an increase of volume due to the water uptake of the solid SOM phase and will change the SOM polarity. Swelling will thus affect sorption processes in the bulk SOM phase and is expected to change the pore sizes. In this contribution, we investigated swelling and wetting kinetics of soil samples by H-NMR-Relaxometry. We found different effects of wetting and swelling on the development of relaxation time distribution and thus of the pore size distribution. Both swelling and wetting can be slow processes, lasting for up to some weeks. During this time, we found changes in the pore size distribution. For swelling phenomena, we observed a continuous change of the effective pore size, and for wetting phenomena, we found a change in water distribution in a probably rigid pore system. Thus, during swelling and wetting, neither pore size distribution nor sorbent properties of SOM nor hydraulic properties remain constant. Due to the slow kinetics, both processes play an important role in sorption, transport and accessibility for water in hydrophobic areas within a time scale of weeks after e.g. a rainfall event. This will affect the environmental availability and the transport of pollutants and nutrients in the field.  相似文献   

5.
The decomposition and transformation of above‐ and below‐ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant‐derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency‐Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix.  相似文献   

6.
7.

Background and aims

Large portions of the deforested areas in Southeast Asia have been ultimately replaced by the invasive grass Imperata cylindrica, but the dynamics of soil organic matter (SOM) during such land transitions are poorly understood. This study presents SOM dynamics in density and particle-size fractions following rainforest destruction and the subsequent establishment and persistence of Imperata grassland.

Methods

We examined soil C stock and natural 13C abundance in these fractions to depths of 100 cm. We predicted future soil C storage and evaluated C turnover rates in these fractions using a simple exponential model. Because soil texture strongly affects soil C storage, two chronosequences of soils differing in soil texture were compared (n?=?1 in each chronosequence).

Results

The clay-associated SOM increased in all soil layers (0–100 cm) along the forest-to-grassland chronosequence, whereas light-fraction SOM in the surface soil layer (0–5 cm) decreased.

Conclusions

In the surface layer, all SOM fractions exhibited rapid replacement of forest-derived C to grassland-derived C, indicating fast turnover. Meanwhile, δ13C values of the light fraction in the surface layer indicated that forest-derived charcoal and/or occluded low-density organic matter constituted unexpectedly large proportions of the light fraction. Mathematical modelling (0–50 cm) showed that grassland-derived C in the clay and silt fractions in all soil layers increased almost linearly for at least 50 years after grassland establishment. In the meantime, the forest-derived C stock in the clay fraction constituted 82 % of the total stable C pool at 0–50-cm depths even under steady-state conditions (t = ∞), indicating that residue of forest-derived SOM associated with clay largely contributed to preserving the soil C pool. Comparing soils with different soil textures, clay and silt particles in coarse-textured soil exhibited a substantially higher degree of organo-mineral interactions per unit volume of clay or silt compared to fine-textured soils.  相似文献   

8.
When aboveground materials are harvested for fuel production, such as with Sorghum bicolor, the sustainability of annual bioenergy feedstocks is influenced by the ability of root inputs to contribute to the formation and persistence of soil organic matter (SOM), and to soil fertility through nutrient recycling. Using 13C and 15N labeling, we traced sorghum root and leaf litter‐derived C and N for 19 months in the field as they were mineralized or formed SOM. Our in situ litter incubation experiment confirms that sorghum roots and leaves significantly differ in their inherent chemical recalcitrance. This resulted in different contributions to C and N storage and recycling. Overall root residues had higher biochemical recalcitrance which led to more C retention in soil (27%) than leaf residues (19%). However, sorghum root residues resulted in higher particulate organic matter (POM) and lower mineral associated organic matter (MAOM), deemed to be the most persistent fraction in soil, than leaf residues. Additionally, the overall higher root‐derived C retention in soil led to higher N retention, reducing the immediate recycling of fertility from root as compared to leaf decomposition. Our study, conducted in a highly aggregated clay‐loam soil, emphasized the important role of aggregates in new SOM formation, particularly the efficient formation of MAOM in microaggregate structures occluded within macroaggregates. Given the known role of roots in promoting aggregation, efficient formation of MAOM within aggregates can be a major mechanism to increase persistent SOM storage belowground when aboveground residues are removed. We conclude that promoting root inputs in S. bicolor bioenergy production systems through plant breeding efforts may be an effective means to counterbalance the aboveground residue removal. However, management strategies need to consider the quantity of inputs involved and may need to support SOM storage and fertility with additional organic matter additions.  相似文献   

9.
Accumulating evidence indicates that future rates of atmospheric N deposition have the potential to increase soil C storage by reducing the decay of plant litter and soil organic matter (SOM). Although the microbial mechanism underlying this response is not well understood, a decline in decay could alter the amount, as well as biochemical composition of SOM. Here, we used size‐density fractionation and solid‐state 13C‐NMR spectroscopy to explore the extent to which declines in microbial decay in a long‐term (ca. 20 yrs.) N deposition experiment have altered the biochemical composition of forest floor, bulk mineral soil, as well as free and occluded particulate organic matter. Significant amounts of organic matter have accumulated in occluded particulate organic matter (~20%; oPOM); however, experimental N deposition had not altered the abundance of carboxyl, aryl, alkyl, or O/N‐alkyl C in forest floor, bulk mineral soil, or any soil fraction. These observations suggest that biochemically equivalent organic matter has accumulated in oPOM at a greater rate under experimental N deposition, relative to the ambient treatment. Although we do not understand the process by which experimental N deposition has fostered the occlusion of organic matter by mineral soil particles, our results highlight the importance of interactions among the products of microbial decay and the chemical and physical properties of silt and clay particles that occlude organic matter from microbial attack. Because oPOM can reside in soils for decades to centuries, organic matter accumulating under future rates of anthropogenic N deposition could remain in soil for long periods of time. If temperate forest soils in the Northern Hemisphere respond like those in our experiment, then unabated deposition of anthropogenic N from the atmosphere has the potential to foster greater soil C storage, especially in fine‐texture forest soils.  相似文献   

10.
11.
Soil solution chemistry, soil acidity andcomposition of adsorbed cations were determinedin two soil profiles developed under a mixedspruce (Picea abies and Piceasitchensis) stand and in one soil profiledeveloped under an oak (Quercus robur)stand. Soils under spruce were classified asSpodosols and soils under oak were classifiedas Inceptisols. All profiles were developed inthe same parent material; a Saahlian sandy tillcontaining less than 2% clay. In the mineralsoil, the contribution from mineral surfaces tothe total cation-exchange capacity (CECt)was estimated to be less than 3%. Soilsolution pH and the percent base saturation ofCECt [%BS = 100 (2Ca + 2Mg + Na + K)CECt –1] were substantially lower inthe upper 35–40 cm of the two Spodosols, ascompared to the Inceptisol. The total amount ofsoil adsorbed base cations (BC) did not differamong the three profiles on an area basis downto 1 m soil depth. Thus, soil acidification ofCECt due to net losses of BC could notexplain differences in soil pH and %BS amongthe soil profiles. A weak acid analogue, takingthe pH-effect of metal complexation intoconsideration, combined with soil solutionionic strength as a covariate, could describeboth the pH variation by depth within soilprofiles and pH differences between theInceptisol and the two Spodosol profiles. Ourresults confirm and extend earlier findingsfrom O and E horizons of Spodosols that theextent to which organic acid groups react withAl minerals to form Al-SOM complexes is a majorpH-buffering process in acidic forest soils. Wesuggest that an increasing Al-saturation of SOMis the major reason for the widely observed pHincrease by depth in acidic forest soils with apH less than approximately 4.5. Our resultsstrongly imply that changes in mass of SOM, theionic strength in soil solution and therelative composition of soil adsorbed Al and Hneed to be considered when the causality behindchanges in pH and base saturation isinvestigated.  相似文献   

12.
Seasonal variations of soil organic matter (SOM) were studied in the unfertilized plot (U) and in the NPK+farmyard manure plot (NPK+FYM) of the 88-year-old ‘Static Experiment’ at Bad Lauchstädt (Germany). Decreases in the C concentrations by 0.24% (U) and 0.43% (NPK+FYM) between June and August were observed which were significant at the p < 0.01 level. The largest differences in N concentrations were 0.035% (U: August vs. September) and 0.029% (NPK+FYM: April vs. May). The C/N ratios were lowest in July and August (~12). The seasonal variations of SOM contents were reflected in significant differences in the C concentrations of organo-mineral particle-size fractions. The proportions of soil C, associated with clay increased from 56% and 38% in April to 69% and 48% in October in the untreated and NPK+FYM-treated plot, respectively. Pyrolysis-field ionization mass spectra of whole soil samples taken in June and August showed larger differences in the molecular composition of SOM in the untreated plot than in the NPK+FYM plot. On the basis of thermograms for six important compound classes of SOM, seasonal variations in (a) their amounts and (b) their incorporation in thermally different stable humic and/or organo-mineral bonds were visualized. Within four weeks of a net mineralization of SOM, portions of phenols, lignin monomers, lignin dimers, alkylaromatics, lipids, N-containing compounds and carbohydrates reached a higher thermal stability, which can be explained by advanced crosslinking. These results represent the first application of this novel methodology to the subtle and difficult problem of seasonal SOM variations.  相似文献   

13.
The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O‐aromatic compounds, and increased with increased contents of alkyl‐ and O‐alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the 13C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate.  相似文献   

14.
可溶性有机碳在米槠天然林不同土层中的迁移特征   总被引:3,自引:0,他引:3  
选取我国中亚热带典型的常绿阔叶林米槠天然林(Castanopsis carlesii)为研究对象,采集林内米槠凋落物并通过挖剖面法分6个土层采集土样至1m。通过浸提米槠凋落物得到可溶性有机碳(dissolved organic carbon,DOC)溶液并在室内模拟其在不同土层的淋溶过程,不仅分析了土壤性质对DOC淋溶的影响,还研究了淋溶前后DOC化学结构的变化,以阐明DOC在不同土层中的迁移特征及影响因素,探寻米槠天然林土壤的固碳潜力和DOC在土壤有机碳循环中的作用。结果表明:(1)下层土壤比上层土壤吸附DOC的能力更强,亲水性DOC与疏水性DOC间会争夺土壤颗粒表面的吸附位点,而且芳香化合物和大分子物质等疏水性DOC组分会被优先吸附;(2)红外光谱表明,芳香类和醚类等疏水性物质会优先被吸附,烷烃类物质却不易被吸附,土壤中原有的酚、醇类亲水性物质会被初始DOC中的疏水性物质置换出来;(3)土壤DOC的截留能力与粘粒、游离氧化铁含量呈极显著正相关,而与土壤有机碳和砂粒含量呈极显著负相关,其中土壤有机碳的含量是影响米槠天然林不同土层DOC截留量的关键因素。  相似文献   

15.
The projected increase in global mean temperature could accelerate the turnover of soil organic matter (SOM). Enhanced soil CO2 emissions could feedback on the climate system, depending on the balance between the sensitivity to temperature of net carbon fixation by vegetation and SOM decomposition. Most of the SOM is stabilised by several physico-chemical mechanisms within the soil architecture, but the response of this quantitatively important fraction to increasing temperature is largely unknown. The aim of this study was to relate the temperature sensitivity of decomposition of physical and chemical soil fractions (size fractions, hydrolysis residues), and of bulk soil, to their quality and turnover time. Soil samples were taken from arable and grassland soils from the Swiss Central Plateau, and CO2 production was measured under strictly controlled conditions at 5, 15, 25, and 35 °C by using sequential incubation. Physico-chemical properties of the samples were characterised by measuring elemental composition, surface area, 14C age, and by using DRIFT spectroscopy. CO2 production rates per unit (g) organic carbon (OC) strongly varied between samples, in relation to the difference in the biochemical quality of the substrates. The temperature response of all samples was exponential up to 25 °C, with the largest variability at lower temperatures. Q10 values were negatively related to CO2 production over the whole temperature range, indicating higher temperature sensitivity of SOM of lower quality. In particular, hydrolysis residues, representing a more stabilised SOM pool containing older C, produced less CO2 g−1 OC than non-hydrolysed fractions or bulk samples at lower temperatures, but similar rates at ≥25 °C, leading to higher Q10 values than in other samples. Based on these results and provided that they apply also to other soils it is suggested that because of the higher sensitivity of passive SOM the overall response of SOM to increasing temperatures might be higher than previously expected from SOM models. Finally, surface area measurements revealed that micro-aggregation rather than organo-mineral association mainly contributes to the longer turnover time of SOM isolated by acid hydrolysis.  相似文献   

16.
2-amino-5-nitropyridinium dihydrogen monophosphate exemplifies a new crystal engineering strategy combining mineral and organic moieties towards enhanced quadratic nonlinear optical properties. This strategy is meant to combine the advantages of mineral ionic structures (cohesion, stability, optical and other damage resistance) with those of organic molecules (structural flexibility, high optical polarizability). This organic inorganic material is designed so as to favour mutual dipolar interactions between the 2-amino-5-nitropyridinium cations and the (H2PO 4 ) n subnetwork interlocked by hydrogen bonding in the same crystalline lattice. This approach rests on the structural features and chemical properties of (H2PO 4 ) n polyanion. The 2A5NPDP structure reveals a polar layered arrangement. The high powder SHG efficiency of 2A5NPDP, comparable to that of state-of-the-art purely organic 3-methyl-4-nitropyridine-1-oxide (POM) crystals, confirms the validity of this approach, currently generalized to a large variety of mixed organo-mineral crystals.  相似文献   

17.
Soil organic matter (SOM) content is a key indicator of soil quality and is correlated to a number of important soil processes that occur in wetlands such as respiration, denitrification, and phosphorus sorption. To better understand the differences in the SOM content of created (CW), restored (RW), and paired natural wetlands (NWs), 11 CW/RW-NW pairs were sampled in North Carolina. The site pairs spanned a range of hydrogeomorphic (HGM) subclasses common in the Coastal Plain. The following null hypotheses were tested: (1) SOM content of paired CW/RWs and NWs are similar; (2) SOM content of wetlands across different HGM subclasses is similar; and (3) interactions between wetland status (CW/RW vs. NW) and hydrogeomorphic subclass are similar. The first null hypothesis was rejected as CW/RWs had significantly lower mean SOM (11.8 ± 3.9%) than their paired NWs (28.98 ± 8.0%) on average and at 10 out of the 11 individual sites. The second and third null hypotheses were also rejected as CW/RWs and NWs in the non-riverine organic soil flat subclass had significantly higher mean SOM content (31.08 ± 14.2%) than the other three subclasses (8.18 ± 2.5, 11.18 ± 8.2, and 10.38 ± 4.2%). Individual sites within this fourth subclass also had significantly different SOM content. This indicated that it would be inappropriate to include the organic soil flat subclass with either the riverine or non-riverine mineral soil flat subclasses when considering restoration guidelines. These results also suggested that if there is a choice in mitigation options between restoration or creation, wetlands should be restored rather than created, especially those in the non-riverine organic soil flat subclass.  相似文献   

18.
Abstract We studied the influence of tree species on soil carbon and nitrogen (N) dynamics in a common garden of replicated monocultures of fourteen angiosperm and gymnosperm, broadleaf and needleleaf species in southwestern Poland. We hypothesized that species would influence soil organic matter (SOM) decomposition primarily via effects on biogeochemical recalcitrance, with species having tissues with high lignin concentrations retarding rates of decomposition in the O and A horizons. Additionally, because prior work demonstrated substantial divergence in foliar and soil base cation concentrations and soil pH among species, we hypothesized that species would influence chemical stabilization of SOM via cation bridging to mineral surfaces in the A-horizon. Our hypotheses were only partially supported: SOM decomposition and microbial biomass were unrelated to plant tissue lignin concentrations, but in the mineral horizon, were significantly negatively related to the percentage of the cation exchange complex (CEC) occupied by polyvalent acidic (hydrolyzing) cations (Al and Fe), likely because these cations stabilize SOM via cation bridging and flocculation and/or because of inhibitory effects of Al or low pH on decomposers. Percent CEC occupied by exchangeable Al and Fe was in turn related to both soil clay content (a parent material characteristic) and root Ca concentrations (a species characteristic). In contrast, species influenced soil N dynamics largely via variation in tissue N concentration. In both laboratory and in situ assays, species having high-N roots exhibited faster rates of net N mineralization and nitrification. Nitrification:mineralization ratios were greater, though, under species with high exchangeable soil Ca2+. Our results indicate that tree species contribute to variation in SOM dynamics, even in the mineral soil horizons. To our knowledge the influence of tree species on SOM decomposition via cation biogeochemistry has not been demonstrated previously, but could be important in other poorly buffered systems dominated by tree species that differ in cation nutrition or that are influenced by acidic deposition.  相似文献   

19.
To evaluate the adsorption characteristics and effects of dissolved organic matter (DOM) from wheat straw (DOMW) and swine manure (DOMS) on mercury [Hg(II)] adsorption by soils, a series of experiments was conducted on 26 soils with different soil properties.Results showed that the values of Kd (a solid–liquid partition coefficient) of soils varied within a range of 0.768–14.386 L g?1. Kd values were mainly controlled by soil organic matter (SOM), cation exchange capacity (CEC), soil nitrogen (N), and soil sulfur (S). When DOMW and DOMS were added to the soil samples, the amount of Hg(II) adsorbed by the soils decreased significantly. Furthermore, based on the decreased percentage of adsorption of Hg(II) by soil upon adding DOMW (PDOMW) or DOMS (PDOMS), about 73.08% soils, the values of PDOMS were smaller than those of PDOMW. The PDOMW values were related to SOM, pH, free Fe oxide content, and CEC, whereas PDOMS values were related to soil free Fe/Al oxide contents. Therefore, we should pay more attention about mercury risk caused by the addition of exogenous organic matter in soils, especially for the soils with low or high pH, less SOM, low CEC, and less free Fe/Al oxide.  相似文献   

20.
The bacterial lipodepsipeptide syringomycin E (SRE) added to one (cis-) side of bilayer lipid membrane forms voltage dependent ion channels. It was found that G-actin increased the SRE-induced membrane conductance due to formation of additional SRE-channels only in the case when actin and SRE were applied to opposite sides of a lipid bilayer. The time course of conductance relaxation depended on the sequence of SRE and actin addition, suggesting that actin binds to the lipid bilayer and binding is a limiting step for SRE-channel formation. G-actin adsorption on the membrane was irreversible. The amphiphilic polymers, Konig’s polyanion (KP) and poly(Lys, Trp) (PLT) produced the actin-like effect. It was shown that the increase in the SRE membrane activity was due to hydrophobic interactions between the adsorbing molecules and membrane. Nevertheless, hydrophobic interactions were not sufficient for the increase of SRE channel-forming activity. The dependence of the number of SRE-channels on the concentration of adsorbing species gave an S-shaped curve indicating cooperative adsorption of the species. Kinetic analysis of SRE-channel number growth led to the conclusion that the actin, KP, and PLT molecules form aggregates (domains) on the trans-monolayer. It is suggested that an excess of SRE-channel formation occurs within the regions of the cis-monolayer adjacent to the domains of the adsorbed molecules, which increase the effective concentration of SRE-channel precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号