首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.  相似文献   

3.
Blood progenitors arise from a pool of pluripotential cells (“hemangioblasts”) within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters (“cardiogenic clusters”) that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts.  相似文献   

4.
5.
The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point — the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.  相似文献   

6.
Segmentation plays crucial roles during morphogenesis. Drosophila legs are divided into segments along the proximal-distal axis by flexible structures called joints. Notch signaling is necessary and sufficient to promote leg growth and joint formation, and is activated in distal cells of each segment in everting prepupal leg discs. The homeobox gene defective proventriculus (dve) is expressed in regions both proximal and distal to the intersegmental folds at 4 h after puparium formation (APF). Dve-expressing region partly overlaps with the Notch-activated region, and they become a complementary pattern at 6 h APF. Interestingly, dve mutant legs resulted in extra joint formation at the center of each tarsal segment, and the forced expression of dve caused a jointless phenotype. We present evidence that Dve suppresses the potential joint-forming activity, and that Notch signaling represses Dve expression to form joints.  相似文献   

7.
Most tissues display several features of cellular polarization. Besides the ubiquitous epithelial polarization in the Apical–Basal (A/B) axis, many epithelia (and associated organs) display a Planar Cell Polarization (PCP). Recently, a crosstalk between the PCP and A/B polarity determinants has been suggested, i.e. the activity or stability of the PCP factor Frizzled is regulated by the A/B determinants aPKC and Bazooka in the Drosophila eye. We have systematically investigated genetic and physical interactions between the Drosophila A/B factors and the core PCP component Strabismus (Stbm)/Van Gogh (Vang). The A/B determinant Scribble was found to interact both genetically and physically with Stbm/Vang. We demonstrate that Scribble binds Stbm/Vang through its PDZ domain 3 and that it cooperates with Stbm/Vang in PCP establishment. Our data indicate that Scribble, in addition to its role in A/B polarity, has a distinct requirement in PCP establishment in the Drosophila eye and wing. We define a scribble allele that is largely PCP specific. Our data show that Scribble is part of the Stbm/Vang PCP complex and further suggest that it might act as an effector of Stbm/Vang during PCP establishment.  相似文献   

8.
The first step in the development of the Drosophila optic medullar primordia is the expansion of symmetrically dividing neuroepithelial cells (NEs); this step is then followed by the appearance of asymmetrically dividing neuroblasts (NBs). However, the mechanisms responsible for the change from NEs to NBs remain unclear. Here, we performed detailed analyses demonstrating that individual NEs are converted into NBs. We also showed that this transition occurs during an elongated G1 phase. During this G1 phase, the morphological features and gene expressions of each columnar NE changed dynamically. Once the NE-to-NB transition was completed, the former NE changed its cell-cycling behavior, commencing asymmetric division. We also found that Notch signaling pathway was activated just before the transition and was rapidly downregulated. Furthermore, the clonal loss of the Notch wild copy in the NE region near the medial edge caused the ectopic accumulation of Delta, leading to the precocious onset of transition. Taken together, these findings indicate that the activation of Notch signaling during a finite window coordinates the proper timing of the NE-to-NB transition.  相似文献   

9.
In homozygous mutants of Drosophila lethal-2-giant larvae (lgl), tissues lose apico-basal cell polarity and exhibit ectopic proliferation. Here, we use clonal analysis in the developing eye to investigate the effect of lgl null mutations in the context of surrounding wild-type tissue. lgl clones in the larval eye disc exhibit ectopic expression of the G1-S regulator, Cyclin E, and ectopic proliferation, but do not lose apico-basal cell polarity. Decreasing the perdurance of Lgl protein in larval eye disc clones, by forcing extra proliferation of lgl tissue (using a Minute background), leads to a loss in cell polarity and to more extreme ectopic cell proliferation. Later in development at the pupal stage, lgl mutant photoreceptor cells show aberrant apico-basal cell polarity, but this is not associated with ectopic proliferation, presumably because cells are differentiated. Thus in a clonal context, the ectopic proliferation and cell polarity defects of lgl mutants are separable. Furthermore, lgl mosaic eye discs have alterations in the normal patterns of apoptosis: in larval discs some lgl and wild-type cells at the clonal boundary undergo apoptosis and are excluded from the epithelia, but apoptosis is decreased elsewhere in the disc, and in pupal retinas lgl tissue shows less apoptosis.  相似文献   

10.
Notch (N) is a single-pass transmembrane receptor. The N signaling pathway is an evolutionarily conserved mechanism that controls various cell-specification processes. Drosophila Deltex (Dx), a RING-domain E3 ubiquitin ligase, binds to the N intracellular domain, promotes N’s endocytic trafficking to late endosomes, and was proposed to activate Suppressor of Hairless [Su(H)]-independent N signaling. However, it has been difficult to evaluate the importance of dx, because no null mutant of a dx family gene has been available in any organism. Here, we report the first null mutant allele of Drosophila dx. We found that dx was involved only in the subsets of N signaling, but was not essential for it in any developmental context. A strong genetic interaction between dx and Su(H) suggested that dx might function in Su(H)-dependent N signaling. Our epistatic analyses suggested that dx functions downstream of the ligands and upstream of activated Su(H). We also uncovered a novel dx activity that suppressed N signaling downstream of N.  相似文献   

11.
In this paper we have investigated the developmental–genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells.  相似文献   

12.
Prickle-Spiny-Legs (Pk) is an essential component of the planar cell polarity (PCP) pathway, together with Frizzled (Fz) and Dishevelled (Dsh). A role for Pk was proposed to mediate feedback amplification of asymmetric Fz/Dsh activity across cell boundaries, ensuring a single prehair initiates at each distal vertex. Here we show that apical localisation of PkPk and PkSple isoforms are mutually independent and regulated by the C-terminal domain. The N-terminus of PkPk is dispensable for PCP, whereas the unique N-terminal domain of PkSple contains an additional localisation function, which confers a qualitatively different activity. Our results suggest that endogenous PkPk and PkSple can affect each other's function via the C-terminal domain, yet may not form heteromeric complexes. Overexpressing PET domain-deleted Pk variants interferes with a branch of Fz/Dsh signalling that regulates the number of wing hairs, and blocks non-cell-autonomous repolarisation. We infer that PkPk is sufficient to mediate the intercellular feedback signalling. Significantly, PkPk but not PkSple is required for hexagonal cell packing in the pupal wing. We propose that Fz-dependent PCP readout reflects short-range, cell-contact based, interactions between hexagonal cells, rather than a direct response to an as yet unidentified diffusible ligand.  相似文献   

13.
During Drosophila eye development, localized Notch signaling at the dorsal ventral (DV)-midline promotes growth of the entire eye field. This long-range action of Notch signaling may be mediated through the diffusible ligand of the Jak/STAT pathway, Unpaired (Upd), which was recently identified as a downstream target of Notch. However, Notch activity has not been shown to be cell-autonomously required for Upd expression and therefore yet another diffusible signal may be required for Notch activation of Upd. Our results clarify the Notch requirement, demonstrating that Notch activity at the DV-midline leads to cell-autonomous expression of Upd as monitored in loss and gain-of-function Notch clones. In addition, mutations in the Jak/STAT pathway interact genetically with the Notch pathway by suppressing Notch mediated overgrowth. N(act) clones show non-autonomous effects on the cell cycle anterior to the furrow, indicating function of the Jak/STAT pathway. However, cell-autonomous effects of Notch within and posterior to the furrow are independent of Upd. Here, Notch autonomously maintains cells in a proliferative state and blocks photoreceptor differentiation.  相似文献   

14.
Notch signaling mediates multiple developmental decisions in Drosophila. In this study, we have examined the role of Notch signaling in Drosophila larval optic lobe development. Loss of function in Notch or its ligand Delta leads to loss of the lamina and a smaller medulla. The neuroepithelial cells in the optic lobe in Notch or Delta mutant brains do not expand but instead differentiate prematurely into medulla neuroblasts, which lead to premature neurogenesis in the medulla. Clonal analyses of loss-of-function alleles for the pathway components, including N, Dl, Su(H), and E(spl)-C, indicate that the Delta/Notch/Su(H) pathway is required for both maintaining the neuroepithelial stem cells and inhibiting medulla neuroblast formation while E(spl)-C is only required for some aspects of the inhibition of medulla neuroblast formation. Conversely, Notch pathway overactivation promotes neuroepithelial cell expansion while suppressing medulla neuroblast formation and neurogenesis; numb loss of function mimics Notch overactivation, suggesting that Numb may inhibit Notch signaling activity in the optic lobe neuroepithelial cells. Thus, our results show that Notch signaling plays a dual role in optic lobe development, by maintaining the neuroepithelial stem cells and promoting their expansion while inhibiting their differentiation into medulla neuroblasts. These roles of Notch signaling are strikingly similar to those of the JAK/STAT pathway in optic lobe development, raising the possibility that these pathways may collaborate to control neuroepithelial stem cell maintenance and expansion, and their differentiation into the progenitor cells.  相似文献   

15.
Adult stem cells reside in specialized microenvironments, or niches, that are essential for their function in vivo. Stem cells are physically attached to the niche, which provides secreted factors that promote their self-renewal and proliferation. Despite intense research on the role of the niche in regulating stem cell function, much less is known about how the niche itself is controlled. We previously showed that insulin signals directly stimulate germline stem cell (GSC) division and indirectly promote GSC maintenance via the niche in Drosophila. Insulin-like peptides are required for maintenance of cap cells (a major component of the niche) via modulation of Notch signaling, and they also control attachment of GSCs to cap cells and E-cadherin levels at the cap cell–GSC junction. Here, we further dissect the molecular and cellular mechanisms underlying these processes. We show that insulin and Notch ligands directly stimulate cap cells to maintain their numbers and indirectly promote GSC maintenance. We also report that insulin signaling, via phosphoinositide 3-kinase and FOXO, intrinsically controls the competence of cap cells to respond to Notch ligands and thereby be maintained. Contrary to a previous report, we also find that Notch ligands originated in GSCs are not required either for Notch activation in the GSC niche, or for cap cell or GSC maintenance. Instead, the niche itself produces ligands that activate Notch signaling within cap cells, promoting stability of the GSC niche. Finally, insulin signals control cap cell–GSC attachment independently of their role in Notch signaling. These results are potentially relevant to many systems in which Notch signaling modulates stem cells and demonstrate that complex interactions between local and systemic signals are required for proper stem cell niche function.  相似文献   

16.
Summary Cytoplasm removal/transplant techniques applied to Drosophila cleavage-stage embryos induced changes in anteroposterior polarity. Removal of anterior cytoplasm or anterior transplantation of posterior cytoplasm caused the anterior formation of posterior (telson) structures, and the replacement of anterior cytoplasm with posterior cytoplasm induced double-abdomen embryos, as reported by Frohnhöfer et al. [J Embryol Exp Morphol 97 (suppl):169–179 (1986)]. Changing the conditions of anterior cytoplasm removal we showed that greater volumes, earlier stages, and removal from the periphery were efficient. In addition we found that double-cephalon embryos are induced by replacing posterior cytoplasm with anterior cytoplasm, while removal of posterior cytoplasm or the posterior transplantation of anterior cytoplasm was without effect. However, introduction of anterior cytoplasm into the posterior of nanos embryos, which are mutants not developing abdominal segments, caused the formation of double-cephalon embryos. Similarly, double-abdomen embryos are produced by introducing posterior cytoplasm into the anterior of bicoid embryos, which are mutants not forming cephalic and thoracic structures. These results are compatible with the initial involvement of separate anterior, posterior and terminal cytoplasmic factors deduced from mutant analysis (Nüsslein-Volhard and Roth 1989).  相似文献   

17.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

18.
Convergent intercellular signals must be precisely integrated in order to elicit specific biological responses. During specification of muscle and cardiac progenitors from clusters of equivalent cells in the Drosophila embryonic mesoderm, the Ras/MAPK pathway--activated by both epidermal and fibroblast growth factor receptors--functions as an inductive cellular determination signal, while lateral inhibition mediated by Notch antagonizes this activity. A critical balance between these signals must be achieved to enable one cell of an equivalence group to segregate as a progenitor while its neighbors assume a nonprogenitor identity. We have investigated whether these opposing signals directly interact with each other, and we have examined how they are integrated by the responding cells to specify their unique fates. Our findings reveal that Ras and Notch do not function independently; rather, we have uncovered several modes of cross-talk between these pathways. Ras induces Notch, its ligand Delta, and the epidermal growth factor receptor antagonist, Argos. We show that Delta and Argos then synergize to nonautonomously block a positive autoregulatory feedback loop that amplifies a fate-inducing Ras signal. This feedback loop is characterized by Ras-mediated upregulation of proximal components of both the epidermal and fibroblast growth factor receptor pathways. In turn, Notch activation in nonprogenitors induces its own expression and simultaneously suppresses both Delta and Argos levels, thereby reinforcing a unidirectional inhibitory response. These reciprocal interactions combine to generate the signal thresholds that are essential for proper specification of progenitors and nonprogenitors from groups of initially equivalent cells.  相似文献   

19.
Patterning in multi-cellular organisms involves progressive restriction of cell fates by generation of boundaries to divide an organ primordium into smaller fields. We have employed the Drosophila eye model to understand the genetic circuitry responsible for defining the boundary between the eye and the head cuticle on the ventral margin. The default state of the early eye is ventral and depends on the function of Lobe (L) and the Notch ligand Serrate (Ser). We identified homothorax (hth) as a strong enhancer of the L mutant phenotype of loss of ventral eye. Hth is a MEIS class gene with a highly conserved Meis-Hth (MH) domain and a homeodomain (HD). Hth is known to bind Extradenticle (Exd) via its MH domain for its nuclear translocation. Loss-of-function of hth, a negative regulator of eye, results in ectopic ventral eye enlargements. This phenotype is complementary to the L mutant phenotype of loss-of-ventral eye. However, if L and hth interact during ventral eye development remains unknown. Here we show that (i) L acts antagonistically to hth, (ii) Hth is upregulated in the L mutant background, and (iii) MH domain of Hth is required for its genetic interaction with L, while its homeodomain is not, (iv) in L mutant background ventral eye suppression function of Hth involves novel MH domain-dependent factor(s), and (v) nuclear localization of Exd is not sufficient to mediate the Hth function in the L mutant background. Further, Exd is not a critical rate-limiting factor for the Hth function. Thus, optimum levels of L and Hth are required to define the boundary between the developing eye and head cuticle on the ventral margin.  相似文献   

20.
Summary Segment polarity genes define the cell states that are required for proper organization of each metameric unit of the Drosophila embryo. Among these, the gooseberry locus has been shown to be composed of two closely related genes which are expressed in an overlapping single-segment periodicity. We have used specific antibodies raised against the protein product of the gooseberry proximal (gsb-p) gene to determine the spatial distribution of this antigen in wild type embryos, and to monitor the effects of segment polarity mutants on the pattern of the gsb-p protein distribution. We find that the gsb-p protein accumulates beneath each posterior axonal commissure in the progeny of neuroblasts deriving from the epidermal compartments of wingless (wg) and engrailed (en) expression. The results of this analysis support the idea that gsb-p has a specific role in the control of cell fates during neurogenesis, and indicate that en and wg provide critical positional cues to define the domain in which gsbp will be activated. Furthermore, these data suggest that, in order to be expressed in the embryonic CNS, gsb-p may preliminarily require activity of the gooseberry-distal gene in the epidermis. Offprint requests to: S. Côté  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号