首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evoked potentials (EP) in response to light flashes were recorded in cats with different degree of optical tract disconnection. In intact and operated on animals, the latent period of the first component of these EP was the same as in the visual cortex. The different degree of disconnection of the classic and commissural optical tract brought about an increase in the amplitude of commissural potentials. The data obtained point to the existence of the effective callosal and extracallosal volleys of interhemispheric transmission of visual information, which are also likely to pay an essential part in compensatory processes of the optical system.  相似文献   

2.
Skilled reading requires mapping of visual text to sound and meaning. Because reading relies on neural systems spread across the brain, a full understanding of this cognitive ability involves the identification of pathways that communicate information between these processing regions. In the past few years, diffusion tensor imaging has been used to identify correlations between white matter properties and reading skills in adults and children. White matter differences have been found in left temporo-parietal areas and in posterior callosal tracts. We review these findings and relate them to possible pathways that are important for various aspects of reading. We describe how the results from diffusion tensor imaging can be integrated with functional results in good and poor readers.  相似文献   

3.
The largest bundle of axonal fibers in the entire mammalian brain, namely the corpus callosum, is the pathway through which almost half a billion neurons scattered over all neocortical areas can exert an influence on their contralateral targets. These fibers are thus crucial participants in the numerous cortical functions requiring collaborative processing of information across the hemispheres. One of such operations is to combine the two partial cortical maps of the visual field into a single, coherent representation. This paper reviews recent anatomical, computational and electrophysiological studies on callosal connectivity in the cat visual system. We analyzed the morphology of individual callosal axons linking primary visual cortices using three-dimensional light-microscopic techniques. While only a minority of callosal axons seem to perform a strict 'point-to-point' mapping between retinotopically corresponding sites in both hemispheres, many others have widespread arbors and terminate into a handful of distant, radially oriented tufts. Therefore, the firing of a single callosal neuron might influence several cortical columns within the opposite hemisphere. Computer simulation was then applied to investigate how the intricate geometry of these axons might shape the spatio-temporal distribution of trans-callosal inputs. Based on the linear relation between diameter and conduction velocity of myelinated fibers, the theoretical delays required for a single action potential to reach all presynaptic boutons of a given arbor were derived from the caliber, g-ratio and length of successive axonal segments. This analysis suggests that the architecture of callosal axons is, in principle, suitable to promote the synchronous activation of multiple targets located across distant columns in the opposite hemisphere. Finally, electrophysiological recordings performed in several laboratories have shown the existence of stimulus-dependent synchronization of visual responses across the two hemispheres. Possible implications of these findings are discussed in the context of temporal tagging of neuronal assemblies.  相似文献   

4.
Multiple recording of transcallosal responses (TCRs) from different cortex areas has been carried out by means of acute experiments with immobilized and anesthetized kittens at the age of 1 to 30 days after birth. Homotopical TCRs in kittens at the age of 2-15 days appear earlier, are presented wider and reveal features of a greater maturity configuration and of amplitudinal-temporal parameters in association zone (parietal and sensorimotor) in comparison with projection zones (somatosensory, visual and auditory). Interhemispheric interrelations in association cortex of kittens are carried out not only by means of callosal but extracallosal system. In the course of animal developing in the parietal cortex the drain of the surface-positive oscillation moves from V to III layer and the drain of the surface-negative deviation remains at the level of II-III layers. The late component is registered up to the depth of III-IV layers, having the drain in I-II layers. In sensorimotor cortex the surface-negative oscillation has the drain in I-II layers, surface-positive--in III and V--VI layers. The interhemispheric asymmetry emerging from the moment of responses appearance is peculiar to TCRs of projection and association zones. In the first month of the postnatal development the asymmetry of positive and negative TCR oscillation amplitude has an individual character in sensorimotor cortex and a specific one--in parietal. The temporal parameters of TCR in association areas of the left hemisphere cortex are significantly shorter than of the right one. The data given testify to the possibility of interhemispheric interrelation realization and the presence of interhemispheric asymmetry in cat's brain on the early stages of postnatal ontogenesis.  相似文献   

5.
Activity of 28 identified neurones of the visual cortex was recorded in cats immobilized by d-tubocurarine. Stimulation of the callosal body with a single stimulus or high-frequency train elicited a short-latency antidromic reaction of neurones in the visual cortex whose axons constitute the main part of the large cerebral commissure. Some commissural neurones responded to a single callosal stimulation by two action potentials the first one being antidromic, the second one being of long-latency postsynaptic origin. The second action potential was generated as a result of activation of axonal collaterals of the same neurone or the neighboring callosal neurones. More than a half of callosal neurones responded to a single stimulation of the lateral geniculate body by short-latency antidromic discharges and by long-latency postsynaptic reactions. These data indicate the existence of the systems of two-way neuronal connections, i.e. calloso-geniculate and geniculo-callosal ones.  相似文献   

6.
The right and left visual hemifields are represented in different cerebral hemispheres and are bound together by connections through the corpus callosum. Much has been learned on the functions of these connections from split-brain patients [1-4], but little is known about their contribution to conscious visual perception in healthy humans. We used diffusion tensor imaging and functional magnetic resonance imaging to investigate which callosal connections contribute to the subjective experience of a visual motion stimulus that requires interhemispheric integration. The "motion quartet" is an ambiguous version of apparent motion that leads to perceptions of either horizontal or vertical motion [5]. Interestingly, observers are more likely to perceive vertical than horizontal motion when the stimulus is presented centrally in the visual field [6]. This asymmetry has been attributed to the fact that, with central fixation, perception of horizontal motion requires integration across hemispheres whereas perception of vertical motion requires only intrahemispheric processing [7]. We are able to show that the microstructure of individually tracked callosal segments connecting motion-sensitive areas of the human MT/V5 complex (hMT/V5+; [8]) can predict the conscious perception of observers. Neither connections between primary visual cortex (V1) nor other surrounding callosal regions exhibit a similar relationship.  相似文献   

7.
The corpus callosum connects two cerebral hemispheres as the most voluminous fiber system in the human brain. The developing callosal fibers originate from immature pyramidal neurons, grow through complex pathways and cross the midline using different substrates in transient fetal structures. We analyzed cellular structures in the human corpus callosum on postmortem brains from the age of 18 weeks post conception to adult, using glial fibrillary acidic protein, neuron-specific nuclear protein, and chondroitin sulphate immunocytochemistry. We found the presence of transient cellular structures, callosal septa, which divide major fiber bundles and ventrally merge with subcallosal zone forming grooves for callosal axons. The callosal septa are composed of glial fibrillary acidic protein reactive meshwork, neurones and the chondroitin sulphate immunoreactive extracellular matrix. The developmental window of prominence of the callosal septa is between 18-34 weeks post conception which corresponds to the period of most intensive growth of callosal axons in human. During the early postnatal period the callosal septa become thinner and shorter, lose their neuronal and chondroitin sulphate content. In conclusion, transient expression of neuronal, glial and extracellular, growing substrate in the callosal septa, as septa itself, indicates their role in guidance during intensive growth of callosal fibers in the human brain. These findings shed some light on the complex morphogenetic events during the growth of the corpus callosum and represent normative parameters necessary for studies of structural plasticity after perinatal lesions.  相似文献   

8.
在综述初级视区胼胝体功能研究的基础上,提出了视网膜双侧投射带的中枢拓扑联系模型,它不但符合一系列生理学和形态学实验的结果,而且解释了胼胝体存在的必要性:它传送的信号补偿了由于存在视网膜双侧投射带而在每侧皮层上所造成的信息损失.  相似文献   

9.
视觉通路的研究在神经科学、 仿生应用和医学治疗上都具有十分重要的意义。西方蜜蜂Apis mellifera作为神经生物学研究的重要模式生物已被广泛地应用于视觉通路的研究。蜜蜂的视觉器官包括1对复眼和3只单眼, 复眼是形成视觉的主要感觉器官。视叶是蜜蜂传递和处理视觉信息的主要神经构造, 它包括视神经节层、 视髓质层、 视小叶和前视结节4个等级的神经纤维网。复杂的视觉信息在经过大脑的各级神经时被分离, 以许多空间隔离的并行连续的视觉通路传递和加工, 然后汇集到高级脑中枢, 部分甚至与其他感觉模态的信息相整合, 最终输出有效信息来调控蜜蜂的各种行为。本文按照信息在视叶中逐级传递的顺序对蜜蜂复眼的视觉通路研究进展进行综述。  相似文献   

10.
In the adult cat, axons running through the corpus callosum interconnect the border between the visual cortical areas 17 and 18 (A17 and A18) of both hemispheres. This specific pattern emerges during postnatal development, under normal viewing conditions (NR), from the elimination of initially exuberant callosal projections. In contrast, if the postnatal visual experience is monocular from birth (MD), juvenile callosal projections are stabilised throughout A17 and A18. The present study aimed at using such a model in vivo to find indications of a contribution of glial cells in the shaping of projections in the developing CNS through interactions with neurones, both in normal and pathological conditions. As a first stage, the distribution and the morphology of microglial cells and astrocytes were investigated from 2 weeks to adulthood. Microglial cells, stained with isolectin-B4, were clustered in the white matter below A17 and A18. Until one month, these clustered cells displayed an ameboid morphology in NR group, while they were more ramified in MD animals. Their phenotype thus depends on the postnatal visual experience, which indicates that microglial cells may interact with axons of visual neurones. It also suggests that they may differentially contribute to the elimination and the stabilisation of juvenile exuberant callosal fibres in NR and MD animals respectively. Beyond one month, microglial cells were very ramified in both experimental groups. Astrocytes were labelled with a GFAP-antibody. The distributions of connexins 43 (Cx43) and 30 (Cx30), the main proteic components of gap junction channels in astrocytes, were also investigated using specific antibodies. Both in NR and MD groups, until 1 month, GFAP-positive astrocytes and Cx43 were mainly localised within the subcortical white matter. Then GFAP, Cx43 and Cx30 stainings progressively appeared within the cortex, throughout A17 and A18 but with a differential laminar expression according to the age. Thus, the distributions of both astrocytes and connexins changed with age; however, the monocular occlusion had no visible effect. This suggests that astrocytes may contribute to the postnatal development of neuronal projections to the primary visual cortex, including visual callosal projections.  相似文献   

11.
The size (somatic area) of 658 cells located in layers 2/3 of cortical areas 17, 18 of both hemispheres in intact monocularly deprived and bilateral strabismic cats was measured. These cells were retrogradely labelled after injections of horseradish peroxidase into ocular dominance columns in areas 17, 18. In all groups of cats, the mean somatic area of callosal cells was significantly larger than the mean somatic area of intrahemispheric cells. It was found that the mean somatic area of callosal cells was increased by 26.6% in monocularly deprived cats and by 20.2% in strabismic cats in relation to the mean somatic area of callosal cells in intact cats. In addition, the mean somatic area of intrahemispheric cells in monocularly deprived cats was indistinguishable from the mean somatic area of intrahemispheric cells in strabismic cats and in intact cats. It is concluded that early binocular vision impairments produce enlargement of callosal cells' size in the visual cortex.  相似文献   

12.
用抑制性神经递质GABA阻断胼胝体输入、用微机控制的运动光棒作为视觉刺激,用金属电极胞外记录技术,研究猫皮层17/18区交界附近细胞方向选择性和取向选择性的变化.在被检测的48个细胞中,50%细胞的方向选择性强度,54.2%细胞的取向选择性强度发生了改变;约20%细胞的最优反应方向或.及最优取向发生了10-30°的偏移;共有56.2%细胞的方向选择性、58.3%细胞的取向选择性受到明确的影响.这些结果表明胼胝体对皮层细胞视觉反应的贡献是多方面的.  相似文献   

13.
Functional interhemispheric asymmetry was investigated by evoked potentials method in experiments on ten cats under ethaminal anaesthesia at 200 points of the visual cortex during the action of binocular and monocular photic flashes of submaximal intensity. Topographic maps have been plotted of the functional interhemispheric asymmetry. In most of the animals a hemisphere dominant and non-dominant at the given moment can be singled out. Section of the callosal body leads to reduction of the functional interhemispheric asymmetry due to a decrease of the focus of maximum activity in the dominant hemisphere and its increase in the non-dominant one. A mozaic pattern of functional interhemispheric asymmetry has been demonstrated, as expressed in the existence of zones of inverse dominance along with prevailing zones of direct dominance. Section of the callosal body produced a decrease in the area of direct dominance and an increase in that of inverse dominance. Absolute interhemispheric asymmetry was most pronounced in the central part of the visual cortex (field 18 and its medial boundary) and the relative one, on the periphery of the visual area (fields 17 and 19).  相似文献   

14.
We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans--and present additional original data--which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized.  相似文献   

15.
We investigated distribution of retrograde-labelled cells in cortical areas 17, 18, and the transition zone 17/18 of both hemispheres in cats after microiontophoretic horseradish peroxidase (HRP) injections into the single cortical columns of area 17, 18, 19 or 21a. On the base of clustered pattern of intrinsic labelling, asymmetric location of labelled callosal cells that was associated with the appropriate pattern of labelling in layers A and A1 of lateral geniculate nucleus, we suggest that cortical neuronal connections are eye-specific and may provide for each eye a separate binding of visual hemifields. After HRP injections into columns of area 19 or 21a, the disparate inputs from areas 17, 18 and transition zone 17/18 were revealed. Such connections may provide a local depth information and the selection of stereoscopic surfaces in central sectors of visual space.  相似文献   

16.
A comparative analysis of monosynaptic afferent and efferent connections of callosal neurons and target neurons of transcallosal fibers with neurons of the specific ipsilateral thalamic nuclei (ventral posterolateral, ventral posteromedial, ventral lateral, and anteroventral) was undertaken on the sensomotor cortex of unanesthetized rabbits, using an electrophysiological method. Differences were demonstrated between callosal neurons and target neurons of transcallosal fibers with respect to monosynaptic inputs from the thalamic nuclei and pathways proceeding toward these structures and (or) entering the pyramidal tract. Among target neurons, compared with callosal neurons, more cells had descending projections (54 and 14%, respectively). Monosynaptic action potentials arose in 22% of target neurons in response to stimulation of specific thalamic nuclei, whereas no such responses occurred in callosal neurons. Projections of target neurons into thalamic nuclei were shown to be formed both by independent fibers and by axon collaterals of the pyramidal tract. It is postulated that the distinctive properties thus discovered indicate significantly greater convergence of influence of thalamic relay neurons on the target neurons; this determines differences known to exist in characteristics of receptive fields and spontaneous and evoked activity of callosal neurons, on the one hand, and of neurons excited synaptically by transcallosal stimulation, on the other hand.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 305–314, May–June, 1985.  相似文献   

17.
Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude that the distinctive postural and kinematic symmetry in instrument playing cross-modally shapes information processing in sensory-motor cortical areas during music listening. This cross-modal plasticity suggests that motor training affects music perception.  相似文献   

18.
The absence of the optic chiasm is an extraordinary and extreme abnormality in the nervous system. The abnormality produces highly atypical functional responses in the cortex, including overlapping hemifield representations and bilateral population receptive fields in both striate and extrastriate visual cortex. Even in the presence of these large functional abnormalities, the effect on visual perception and daily life is not easily detected. Here, we demonstrate that in two achiasmic humans the gross topography of the geniculostriate and occipital callosal connections remains largely unaltered. We conclude that visual function is preserved by reorganization of intracortical connections instead of large-scale reorganizations of the visual cortex. Thus, developmental mechanisms of local wiring within cortical maps compensate for the improper gross wiring to preserve function in human achiasma.  相似文献   

19.
In search for the functional counterpart of the alternative Probst and sigmoid bundles, considered as morphological evidence of neuroplasticity in callosal dysgenesis, electroencephalographic (EEG) coherence analysis was combined with high resolution and diffusion tensor magnetic resonance imaging. Data of two patients with callosal agenesis, plus two with typical partial dysgenesis with a remnant genu, and one atypical patient with a substantially reduced genu were compared to those of fifteen neurotypic controls. The interhemispheric EEG coherence between homologous nontemporal brain regions corresponded to absence or partial presence of callosal connections. A generalized coherence reduction was observed in complete acallosal patients, as well as coherence preservation in the anterior areas of the two patients with a remnant genu. jThe sigmoid bundles found in three patients with partial dysgenesis correlated with augmented EEG coherence between anterior regions of one hemisphere and posterior regions of the other. These heterologous (crossed) interhemispheric connections were asymmetric in both imaging and EEG patterns, with predominance of the right-anterior-to-left-posterior connections over the mirror ones. The Probst bundles correlated with higher intrahemispheric long-distance coherence in all patients. The significant correlations observed for the delta, theta and alpha bands indicate that these alternative pathways are functional, although the neuropsychological nature of this function is still unknown.  相似文献   

20.
The initial stage of information processing by the visual system reduces the information contained in the continuous image on the retina into a discrete set of responses which are carried from the lateral geniculate nucleus (LGN) to the visual cortex.-1. The optimal sampling of the light intensity distribution in the visual environment is achieved only if each channel in the visual pathways carries undistorted information corresponding to an image element. The visual system approaches as closely as possible the scheme of optimal spatial sampling, retaining the full information on the low spatial frequency content of the object light intensity. The ideal receptive field of a sustained LGN cell is then of the form J 1 (Kr)/Kr.-2. The experimentally determined receptive fields of sustained LGN cells (and to some extent retinal ganglion cells as well) in cat closely resemble the functional form J 1 (Kr)/Kr. The centre-surround organization of the receptive fields is therefore understood as a scheme which leads to a maximal information flow through the visual pathways.-3. The optimal sampling scheme cannot be realized by the retina alone, because of restrictions on the size of neural networks. It is therefore constructed in two stages, ending at the LGN level. A recombination of ganglion cell signals into optimal receptive fields is a major role of the LGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号