共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of collagen crosslinks 总被引:3,自引:0,他引:3
2.
Biosynthesis of collagen crosslinks. II. In vivo labelling and stability of lung collagen in rats 总被引:1,自引:0,他引:1
Rat lung collagen was labelled in vivo by a single intraperitoneal injection of [3H]lysine at several key timepoints in lung development: days 11 (alveolar proliferation), 26 (start of equilibrated growth), 42 (end of equilibrated growth), and 100 (adult lung structure present). The rates of deposition of labelled hydroxylysine and the difunctional, Schiff base-derived crosslinks hydroxylysinonorleucine (HLNL) and dihydroxylysinonorleucine (DHLNL) were quantified. We also measured total lung content of the trifunctional, mature crosslink hydroxypyridinium (OHP) in these same animals. While the relative rates of accumulation of labelled collagen [3H]hydroxylysine differed by a factor of about 6 at the different times of injection of labelled precursor, quantitative and qualitative patterns of collagen crosslinking were very similar at all of the lung developmental stages studied. Furthermore, there was little or no breakdown of the lung collagen pool as defined by the presence of labelled crosslinks; changes in lung DHLNL content could be completely accounted for by its maturation to OHP, regardless of the age of the rats when injected with the radioactive precursor. We conclude that mature, crosslinked collagen in the lungs of rats, which is obligatorily an extracellular pool, is not being degraded at a measurable rate. Therefore, studies of others that have shown apparent high rates of breakdown of newly synthesized collagen in lungs of whole animals using different methods are probably not reflective of the metabolic fate of total lung collagen, and may indicate that degradation of normal lung collagen occurs predominantly or exclusively intracellularly. 相似文献
3.
Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthrosis. 总被引:9,自引:0,他引:9 下载免费PDF全文
Osteoarthrosis was induced in one knee joint of dogs by an established surgical procedure. Changes in the articular cartilage in the biosynthesis of collagen and other proteins were sought by radiochemical labelling in vivo, with the following findings. (1) Collagen synthesis was stimulated in all cartilage surfaces of the experimental joints at 2, 8 and 24 weeks after surgery. Systemic labelling with [3H]proline showed that over 10 times more collagen was being deposited per dry weight of experimental cartilage compared with control cartilage in the unoperated knee. (2) Type-II collagen was the radiolabelled product in all samples of experimental cartilage ranging in quality from undamaged to overtly fibrillated, and was the only collagen detected chemically in the matrix of osteoarthrotic cartilage from either dog or human joints. (3) Hydroxylysine glycosylation was examined in the newly synthesized cartilage collagen by labelling dog joints in vivo with [3H]lysine. In experimental knees the new collagen was less glycosylated than in controls. However, no difference in glycosylation of the total collagen in the tissues was observed by chemical analysis. (4) Over half the protein-bound tritium was extracted by 4 M-guanidinium chloride from control cartilage labelled with [3H]proline, compared with one-quarter or less from experimental cartilage. Two-thirds of the extracted tritium separated in the upper fraction on density-gradient centrifugation in CsCl under associative conditions. Much of this ran with a single protein band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under reducing conditions. The identity of this protein was unknown, although it resembled serum albumin in mobility afte disulphide-bond cleavage. 相似文献
4.
5.
6.
7.
8.
Summary Type III collagen in normal human articular cartilage has been detected biochemically and its location in a diffuse area around the chondrocytes demonstrated by immunofluorescence. It can be found pericellularly throughout the depth of the cartilage and is evident in specimens ranging in age from 17 to 81 years. 相似文献
9.
Mark C van Turnhout Henk Schipper Bas Engel Willem Buist Sander Kranenbarg Johan L van Leeuwen 《BMC developmental biology》2010,10(1):62
Background
Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries) as our model animal. 相似文献10.
11.
12.
Mark C van Turnhout Henk Schipper Barend van Lagen Han Zuilhof Sander Kranenbarg Johan L van Leeuwen 《BMC developmental biology》2010,10(1):108
Background
Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (Ovis aries) AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn) and maturity (72 weeks). In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint) in the distal metacarpus of a fore leg and a hind leg. 相似文献13.
During incubation with physiological buffers at 37°, as well as during maturation, native collagen fibers display a progressive increase in tensile strength and insolubility. This is paralleled by a progressive loss of reducible, intermolecular crosslinks. The experiments described in this paper indicate that nucleophilic addition of lysine and/or hydroxylysine residues to the electrophilic double bond of the reducible crosslinks transforms them into more stable, non-reducible crosslinks. Indeed, modification of lysine/hydroxylysine residues completely blocks this transformation, while modification of his, arg, glu and asp is without effect. On the basis of these and other experiments, tentative structures are proposed for the stable crosslinks. 相似文献
14.
The effect of type IX on in vitro fibrillogenesis of type II collagen indicated that, while not preventing fibrillogenesis, the presence of type IX collagen reduced the size of the type II fibre aggregates. This observation is consistent with the in vivo localisation studies of type IX collagen. Using the immunogold labelling technique, type IX collagen was shown to be located evenly on small fibrils which occur at higher concentration closer to the cell. Therefore type IX collagen may function as a regulator of fibre diameter in articular cartilage. 相似文献
15.
T. Aigner E. Reichenberger W. Bertling T. Kirsch H. Stöß K. von der Mark 《Virchows Archiv. B, Cell pathology including molecular pathology》1993,63(1):205-211
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth
plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated,
osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et
al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular
cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy
adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen
in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent
discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short
mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and
repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation.
As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated
with strong type II collagen expression. 相似文献
16.
Sabatini M Thomas M Deschamps C Lesur C Rolland G de Nanteuil G Bonnet J 《Biochemical and biophysical research communications》2001,283(5):1105-1110
Ceramide participates in signal transduction of IL-1 and TNF, two cytokines likely involved in cartilage degradation in osteoarthritis. We previously showed that ceramide stimulates proteoglycan degradation, mRNA expression of matrix metalloproteinase (MMP)-1, -3, and -13, and pro-MMP-3 production in rabbit cartilage. Since aggrecan, the main cartilage proteoglycan, can be cleaved by metalloproteinases both of MMP and aggrecanase type, the aim of this study was to determine if ceramide stimulates aggrecanase action and, if that is the case, in which measure aggrecanase mediates the degradative effect of ceramide. To this end, antibodies were used against the C terminal aggrecan neoepitopes generated by aggrecanases (NITEGE(373)) and MMPs (DIPEN(341)). Ceramide C(2) at 10(-5) to 10(-4) M dose-dependently increased NITEGE signal, without changing that of DIPEN, in cultured explants of rabbit cartilage. The effects of 10(-4) M C(2) on NITEGE signal and proteoglycan degradation were similarly antagonized by the metalloproteinase inhibitor batimastat, with return to the basal level at 10(-6) M. These results show that, similarly to IL-1 and TNF, ceramide-induced aggrecan degradation is mainly due to aggrecanases. That no increase of MMP activity was detected, despite stimulation of MMP expression, was probably due to lack of proenzyme conversion to mature form, since addition of a MMP activator to C(2)-treated cartilage increased both DIPEN signal and proteoglycan degradation. These findings support the hypothesis that cytokine-induced ceramide could play a mediatory role in situations of increased degradation of cartilage matrix. 相似文献
17.
Roemhildt ML Coughlin KM Peura GD Fleming BC Beynnon BD 《Journal of biomechanics》2006,39(12):2331-2337
The material properties of articular cartilage in the rabbit tibial plateau were determined using biphasic indentation creep tests. Cartilage specimens from matched-pair hind limbs of rabbits approximately 4 months of age and greater than 12 months of age were tested on two locations within each compartment using a custom built materials testing apparatus. A three-way ANOVA was used to determine the effect of leg, compartment, and test location on the material properties (aggregate modulus, permeability, and Poisson's ratio) and thickness of the cartilage for each set of specimens. While no differences were observed in cartilage properties between the left and right legs, differences between compartments were found in each set of specimens. For cartilage from the adolescent group, values for aggregate modulus were 40% less in the medial compartment compared to the lateral compartment, while values for permeability and thickness were greater in the medial compartment compared to the lateral compartment (57% and 30%, respectively). Values for Poisson's ratio were 19% less in the medial compartment compared to the lateral compartment. There was also a strong trend for thickness to differ between test locations. Similar findings were observed for cartilage from the mature group with values for permeability and thickness being greater in the medial compartment compared to the lateral compartment (66% and 34%, respectively). Values for Poisson's ratio were 22% less in the medial compartment compared to the lateral compartment. 相似文献
18.
Stable crosslinks of collagen 总被引:1,自引:0,他引:1
N R Davis 《Biochemical and biophysical research communications》1973,54(3):914-922
It has recently been proposed that the syndesine crosslinks of collagen possess their unique stability because they can isomerize to a α-keto-amine. Although this type of isomerization is perfectly feasible for α-hydroxy-aldimines like syndesine, the present studies suggest that the amount of α-keto-amine present in some tissues is far too low to account for the observed stability. However, it is possible that the syndesine crosslinks adopt a cyclic hydrogen-bonded conformation. This could present considerable steric hindrance to hydration of the CN bond, rendering this aldimine crosslink much more stable than those with no α-hydroxy group. 相似文献
19.
20.
Mature rabbit articular cartilage cultures have been used to study the catabolism of aggregating proteoglycan monomers in normal cartilage. During the first 4 days of culture, about 40% of monomers are degraded and lose the ability to bind to hyaluronate. The non-aggregating products (NAgg-PG) have been isolated and compared structurally and immunologically to aggregating monomers (Agg-PG) purified from fresh tissue. The results show that: (1) NAgg-PG are smaller, more heterogeneous in size and have a lower protein/glycosaminoglycan ratio than Agg-PG. (2) NAgg-PG and Agg-PG have a very similar chondroitin sulfate/keratan sulfate ratio. (3) NAgg-PG have 25-50% lower disulfide content than Agg-PG. (4) NAgg-PG have only about 20% of the reactivity of Agg-PG towards a monoclonal antibody (12-20/1-C-6) specific for the hyaluronate binding region of the core protein. These results provide further evidence that proteoglycan catabolism in cartilage explants involves proteolysis of core protein resulting in separation of the hyaluronate binding region from the glycosaminoglycan-rich regions. 相似文献