首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Single electrical shocks to the column sometimes elicit a series of 1-6 pulses in the SS1 (ectodermal slow system) but the first pulse does not appear until 5-28 s after stimulation. These pulses occur in addition to the early SS1 pulse which follows every shock and which has a conduction delay of less than 1 s. 2. The threshold of the delayed SS1 response is different from the thresholds of the three known conducting systems (through-conducting nerve net, SS1, and SS2). 3. In the case of stimulation of the column, the delayed SS1 pulses do not arise at the point of stimulation but probably originate in the tentacles or upper column. The pulse origin can shift during a single burst. 4. The pathway from the point of stimulation to the site of origin of delayed SS1 pulses is endodermal. We propose that this pathway represents a fourth conducting system (Delayed Initiation System--DIS). The DIS must connect, across the mesogloea, with the ectodermal SS1. The long pulse delay and repetitive firing may derive from pacemaker activity in the DIS. The DIS pacemakers closely resemble the pacemakers connected to the through-conducting nerve net. The DIS may be neuronal. 5. Delayed SS1 pulse bursts from unattached anemones showed an earlier onset, and more pulses/burst, than those from attached anemones. 6. Delayed SS1 pulses can also be evoked by electrical, and in some cases mechanical, stimulation of the pedal disc, tentacles, and pharynx, but there are regional differences in the number of pulses evoked, in their delay, and in their site of origin.  相似文献   

2.
1. Pulses in two slow conducting systems, the ectodermal SS 1 and the endodermal SS 2, were recorded during shell-climbing behaviour. The mean pulse interval of SS 1 pulses was 7-4 s and that of SS 2 pulses was 6-4 s. Activity in both systems may arise as a sensory response of tentacles to shell contact, but the SS 1 and SS 2 may not share the same receptors. 2. Electrical stimulation of the SS 1 and SS 2 together, at a frequency of 1 shock every 5 s, elicits shell-climbing behaviour in the absence of a shell. 3. Low-frequency nerve-net activity (about 1 pulse every 15 s) accompanies column bending during both normal and electrically elicited responses. This activity probably arises as a result of column bending and is not due to a sensory response to the shell.  相似文献   

3.
1. Electrophysiological techniques have been employed to examine the nature of the response observed in the ectodermal slow-conduction system (SSI) when dissolved food substances contact the column of Tealia felina. The response seems to consist entirely of sensory activity which may continue for periods of many minutes, provided that the stimulatory chemicals remain contacting the column. 2. The interval between each evoked pulse gradually increases as the sensory response progresses. This does not result from fatigue in the conduction system but involves a genuine process of sensory adaptation. This may occur over a period of several minutes, which is much longer than comparable adaptation in higher animals. 3. Physiological evidence suggests that the chemoreceptors involved are dispersed throughout the column ectoderm and are absent from the pedal disc, oral disc, tentacles and pharynx. 4. The basic role of the SSI in coordinating behavioural activity in sea anemones is reviewed. It is concluded that it functions primarily as a single, diffuse-conducting unit responsible for transmitting frequency-coded sensory information from ectodermal chemoreceptors to ectodermal (and perhaps endodermal) effectors.  相似文献   

4.
1. Electrical activity has been recorded from Stomphia coccinea during the behavioural sequence in which the detached anemone settles on to a Modiolus shell. 2. When a responsive tentacle contacts the shell, a short, complex burst of pulses is elicited. These remain confined to the region of contact. The endodermal slow-conduction system (SS2) then begins to fire repetitively (a typical example is 16 SS2 pulses at a mean interpulse interval of 5 s) until the pedal disc begins to inflate. Shell-tentacle contact is essential for stimulation of SS2 activity. 3. The complete response, apart from local bending of the column, may be reproduced by electrical stimulation of the SS2 alone. As few as 10 stimuli at frequencies between 1 shock/s and 1 shock/10 s are required to elicit the response.  相似文献   

5.
Jaw protrusion is a major functional motif in fish feeding and can occur during mouth opening or closing. This temporal variation impacts the role that jaw protrusion plays in prey apprehension and processing. The lesser electric ray Narcine brasiliensis is a benthic elasmobranch (Batoidea: Torpediniformes) with an extreme and unique method of prey capture. The feeding kinematics of this species were investigated using high-speed videography and pressure transduction. The ray captures its food by protruding its jaws up to 100% of head length (approximately 20% of disc width) beneath the substrate and generating negative oral pressures (< or = 31 kPa) to suck worms into its mouth. Food is further winnowed from ingested sediment by repeated, often asymmetrical protrusions of the jaws (> 70 degrees deviation from the midline) while sand is expelled from the spiracles, gills and mouth. The pronounced ram contribution of capture (jaw protrusion) brings the mouth close enough to the food to allow suction feeding. Due to the anatomical coupling of the jaws, upper jaw protrusion occurs in the expansive phase (unlike most elasmobranchs and similar to bony fishes), and also exhibits a biphasic (slow-open, fast-open) movement similar to tetrapod feeding. The morphological restrictions that permit this unique protrusion mechanism, including coupled jaws and a narrow gape, may increase suction performance, but also likely strongly constrain dietary breadth.  相似文献   

6.
Photographs of Pterophyllum and Gasterosteus feeding indicate that they suck food into their mouths by expansion of the buccal and opercular cavities. The premaxillae are protruded as the mouth opens, and remain protruded as it closes. The mechanisms whereby these movements can be performed, by these and by more generalized acanthopterygians, are described. It is shown that the palatines of generalized acanthopterygians are so arranged as to prevent retraction of the premaxillae when the mouth is closed with the buccal cavity expanded.
It is estimated, from rough measurements on a few species, that a teleost cannot suck into its mouth food that is further from its mouth opening than about one-quarter of the length of its head. It is shown that protrusion of the premaxillae can be useful in getting the mouth opening close to food that is to be sucked in, expecially when it is to be taken from the bottom. The possible advantages of closing the mouth with the premaxillae protruded are discussed.
The origin of the acanthopterygian protrusile mechanism is discussed.  相似文献   

7.
The European sea bass Dicentrarchus labrax is a marine teleost important in Mediterranean aquaculture. The development of the entire digestive tract of D. labrax , including the pharynx, was investigated from early embryonic development to day 5 post hatching (dph), when the mouth opens. The digestive tract is initialized at stage 12 somites independently from two distinct infoldings of the endodermal sheet. In the pharyngeal region, the anterior infolding forms the pharynx and the first gill slits at stage 25 somites. The other three gill arches and slits are formed between 1 and 5 dph. Posteriorly, in the gut tube region, a posterior infolding forms the foregut, midgut and hindgut. The anus opens before hatching, at stage 28 somites. Associated organs (liver, pancreas and gall bladder) are all discernable from 3 dph. Some aspects of the development of the two independent initial infoldings seem original compared with data in the literature. These results are discussed and compared with embryonic and post-embryonic development patterns in other teleosts.  相似文献   

8.
9.
O. Betz 《Zoomorphology》1996,116(1):15-34
 Further to basic investigations, additional histological and scanning electron microscopical studies of the anatomy and morphology of the adhesion-capture apparatus in species of the genus Stenus have been carried out to achieve a better understanding of its mode of working and evolution. An interspecific morphological comparison of the sticky cushions (paraglossae) of the labium of 47 Stenus species has established that, in most of the investigated species, they represent a general type that has apparently been modified in different ways during the course of evolution. These changes primarily concern the number of adhesive setae on a cushion and the degree of branching of a single adhesive seta. It has been shown experimentally that larger sticky cushions and higher numbers of adhesive setae or adhesive contacts improve adhesion and thus lead to enhanced capture success. In addition to the morphological comparison of the paraglossae, some general aspects of the functional anatomy and morphology of the labium have been examined. It has been established that, during attack, the sticky cushions and the tips of the sense-spines are directed frontally with respect to the prey. This concurrent erection of both paraglossae and the glossae is conditioned by an exocuticular groin that connects the glossae and paraglossae on the left and on the right. The interior of the sticky cushions is made up of a loose reticulum of endocuticular fibres. This cushion-like endocuticle may absorb the thrust caused by the impact of the sticky cushions on the prey. All tissue and chitinous components within the connecting tube of the labium are surrounded by an extra inner covering that separates the tissue within the labium from the exterior wall of the labium. During the protrusion of the labium, this inner tube is most probably required to direct the haemolymph, flowing into the interior of the labium, towards the front. The hypopha- rynx is situated directly in front of the opening of the mouth and narrows the opening into the pharynx. It may be well suited for retaining large food pieces in front of the mouth in order to prevent their premature movement towards the mouth. Accepted: 12 October 1995  相似文献   

10.
We investigated morphology, dynamics and origin of cells surrounding the mouth of Hydra vulgaris using the monoclonal antibody L96. This antibody recognises a one cell-thick ring of endodermal epithelial cells exactly at the boundary between endoderm (gastrodermis) and ectoderm (epidermis). L96+ cells can stretch considerably without any cell rupture during mouth opening. Thus, our data prove the existence of a distinct cell population defining hydra's mouth. A model for mouth opening is proposed and the significance of L96+ cells for boundary formation between ectoderm and endoderm is discussed.  相似文献   

11.
Suction electrodes attached to tentacles of the sea anemone Calliactis parasitica record regular bursts of activity associated with the through‐conducting nerve net. Most bursts consist of 10–15 pulses at a frequency of 1 every 4 sec to 1 every 10 sec. The interval between bursts is usually 10–20 min. Regularity in pulse number and frequency in successive bursts suggests that the activity originates from a pacemaker. Bursts are always followed by slow contraction of endodermal longitudinal (parietal) muscles after a short delay, and endo‐dermal circular muscles after a long delay. A simple model for nervous pacemaker control of rhythmic contractions cannot be proposed as slow contractions can also occur in the absence of recorded nerve net activity.  相似文献   

12.
To aid in the development of artificial diets for mass rearing parasitioids, we investigated the anatomical changes in the digestive tract during feeding behaviour of larval Trichogramma australicum (Hymenoptera : Trichogrammatidae). Larvae begin to feed immediately upon eclosion and feed continuously for 4 h until replete. Feeding is characterised by rhythmic muscle contractions (ca 1 per s) of the pharynx. Contractions of the pharyngeal dilator muscles lift the roof of the lobe-shaped pharynx away from the floor of the chamber, opening the mouth and pumping food into the pharyngeal cavity. Another muscle contraction occurs about 0.5 s later, forcing the bolus of food through the oesophagus and into the midgut. The junction of fore- and midgut is marked by a cardiac valve. The midgut occupies most of the body cavity and is lined with highly vacuolated, flattened cells and a dispersed layer of muscle cells. In the centre of the midgut, food has the appearance of host egg contents. Food near the midgut epithelial cells has a finer, more homogeneous appearance. This change in the physical properties of the gut contents is indicative of the digestion process. In the prepupa, where digestion is complete, the entire gut contents have this appearance. After eclosion, the vitelline membrane remains attached to the posterior end of the larva. We believe this attachment to be adaptive in two ways: (1) to anchor the larva against the movements of its anterior portion, thereby increasing the efficiency of foraging within the egg; and (2) to prevent a free-floating membrane from clogging the mouthparts during ingestion.  相似文献   

13.
Gracilacus wuae n. sp. from soil associated with cow parsnip in Ontario, Canada is described and illustrated. Morphologically, females have a long stylet ranging from 80 to 93 µm long, the lip region not offset from the body contour, without lateral lips but with large and flat submedian lobes, the mouth opening slit-like elongated laterally and surrounded by lateral flaps, the excretory pore is anterior to the knobs of the stylet; males without stylet and the pharynx degenerated. The fourth-stage juveniles lack a stylet, the pharynx degenerated, and can be differentiated into preadult females and males based on the position of the genital primordia. The third-stage juveniles are similar to females but smaller. Phylogenetic studies using the rDNA small subunit 18S, large subunit 28S D2/D3, and internal transcribed spacer (ITS) sequences collectively provide evidence of a grouping with other Gracilacus and some species of Paratylenchus with stylet length of females longer than 41 µm deposited in GenBank.  相似文献   

14.
1. In slice studies of mature and immature CA1 hippocampal pyramidal cells from rabbit, somatostatin 14 (SS14), the related peptide somatostatin 28(1-12) [SS(1-12)], and the synthetic analogue of somatostatin 14, SMS-201995 (SMS), had similar effects. When pressure-ejected onto cell somata, these peptides elicited depolarizations, often accompanied by action potential discharge. When applied to dendrites, the peptides produced depolarizations or hyperpolarizations. 2. When a large amount of one of the three somatostatin-related (SS) peptides was applied to the slice at some distance from the impaled cell, hyperpolarizations were observed that were not always blocked by tetrodotoxin (TTX) or low Ca2+. Since SS peptides were also found to depolarize interneurons in area CA1, it seems likely that the hyperpolarizations that were blocked by TTX or low Ca2+ were mediated via excitation of interneurons that in turn hyperpolarized pyramidal cells. 3. All SS peptides also had long-lasting effects on CA1 pyramidal cells that led to spontaneous firing of action potentials and an increase in the number of action potentials discharged in response to a given depolarizing current pulse; the spontaneous discharge effect was blocked by TTX or low Ca2+ plus Mn2+ and, thus, appeared to have a presynaptic mechanism. However, the increase in discharge in response to a constant depolarizing current pulse was not dependent on intact synaptic transmission and, therefore, was attributable to a direct postsynaptic effect of the SS peptides.  相似文献   

15.
Quantum dots (QDs) have been used extensively as fluorescent markers in several studies on living cells. Here, we report the synthesis of conjugates based on glutathione (GSH) and QDs (GSH-QDs) and we prove how these functionalized fluorescent probes can be used for staining a freshwater invertebrate called Hydra vulgaris. GSH is known to promote Hydra feeding response by inducing mouth opening. We demonstrate that GSH-QDs as well are able to elicit biological activity in such an animal, which results in the fluorescent staining of Hydra. GSH-QDs, once they reach the gastric region, are internalized by endodermal cells. The efficiency of GSH-QD internalization increases significantly when nanoparticles are coadministrated with free GSH. We also compared the behavior of bare QDs to that of GSH-QDs both in the presence and in the absence of free GSH. The conclusions from these series of experiments point to the presence of GSH binding proteins in the endodermal cell layer and uncover a novel role played by glutathione in this organism.  相似文献   

16.
Polyps of Anthozoa usually display bilateral symmetry with respect to their mouth opening, to their pharynx, and in particular to the arrangement of their mesenteries. Mesenteries, which are endodermal folds running from the apical to the basal end of the body, subdivide the gastric cavity into pouches. They form in a bilateral symmetric sequence. In this article I propose that early in polyp development the endoderm subdivides successively into three different types of compartments. A mesentery forms at the border between compartments. Two of the compartments are homologous to those of Scyphozoa. They form by mutual activation of cell states that locally exclude each other. The third compartment leads to siphonoglyph formation and is an evolutionary innovation of the Anthozoa. The mechanism that controls the number and spatial arrangement of the third type of compartment changes the radial symmetry into a bilateral one and occasionally into a different one. The dynamics of its formation indicate an activator-inhibitor mechanism. Computer models are provided that reproduce decision steps in the generation of the mesenteries.  相似文献   

17.
18.
McFarlane  I. D.  Lawn  I. D. 《Hydrobiologia》1991,(1):599-604
The ectodermal slow system (SS1) is one of 3 separate nerve nets in sea anemones. SS1 sensory responses coordinate swimming in Stomphia coccinea (escape response) and expansion to dissolved food substances in Urticina felina (pre-feeding response). Here we have studied Actinia equina, Anemonia viridis, and Anthopleura ballii. Although these anemones can escape from nudibranch predators, the SS1 response to attack by Aeolidia papillosa is probably evoked mechanically rather than chemically (cf. Stomphia). Multiple SS1 pulses to mechanical stimulation are described for the first time. Previous work has shown that in the pre-feeding response of Urticina the SS1 is excited by betaine; in Actinia however, the excitant is proline. The anemones studied can utilize the SS1 in 2 different behavioural responses (escape and pre-feeding/feeding) because the different receptors involved respond at different frequencies (at around 0.6 Hz in escape and 0.2 Hz in pre-feeding).  相似文献   

19.
The homology of pharynges within the mostly pharynx‐less Acoela has been a matter of discussion for decades and even the basic question of whether a pharynx is a primitive trait within the Acoela and homologous to the pharynx of platyhelminth turbellarians is open. By using fluorescence staining of musculature, as well as conventional histological techniques and transmission electron microscopy, the present study sets focus on the mouth and pharynx (where present) of seven species of Acoela within Paratomellidae, Solenofilomorphidae, Hofsteniidae, Proporidae, and Convolutidae, as well as one species of Nemertodermatida and Catenulida, respectively. It is shown that among the investigated families of acoels there is a great variability in muscle systems associated with the mouth and pharynx and that pharynx histology and ultrastructural characters are widely diverse. There are no close similarities between the acoel pharynges and the catenulid pharynx but there is a general resemblance of the musculature associated with the mouth in the representatives of Paratomellidae and Nemertodermatida. On the basis of the profound differences in pharynx morphology, three major conclusions are drawn: 1) the pharynges as present in Recent acoels are not homologous to the pharynx simplex characteristic for Catenulida and Macrostomida within the Platyhelminthes; 2) the different muscular pharynx types of acoels are not homologous between higher taxa and thus a single acoel‐type pharynx simplex cannot be defined; 3) the presence of a muscular pharynx most likely does not represent the ancestral state. J. Morphol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
The ultrastructure and distribution of receptor cells near the mouth and (where present) the pharynx of Hofstenia miamia, Proporus bermudensis, Conaperta thela, and Convoluta convoluta (Acoela) were investigated by transmission electron microscopy and confocal laser scanning microscopy of specimens stained with a fluorescence marker for actin. Five types of monociliary receptors were identified: (1) non‐collared receptors with a single long and narrow ciliary rootlet; (2) non‐collared receptors with a wide main ciliary rootlet and a smaller posterior rootlet; (3) non‐collared receptors with a single wide and hollow ciliary rootlet with a granulated core; (4) Collar (?) receptors with obliquely radial filament bundles in the cell apex and with a single hollow ciliary rootlet composed of numerous strand‐like elements; and (5) Collar receptors lacking a striated rootlet but with a granular body (swallow's nest rootlet). While H. miamia bears the first two receptor types, P. bermudensis has receptors of type 1, 3 and 5, and Cona. thela and Conv. convoluta have receptors of type 3, 4 and 5. The density of receptors is generally highest at the anterior body tip, regardless of where the mouth is located. Most receptor types occur scattered over the whole body but type 2 receptors of H. miamia are restricted to the pharynx and mouth region. The lack of a common receptor type specific for the mouth and pharynx of the investigated species points to an independent origin of the pharynges in Hofsteniidae and in Proporidae and of the mouth tube in Convolutidae. Moreover, the homology of the so‐called collar receptors in Acoela with typical collar receptors in other invertebrates is questioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号