首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported in AR42J pancreatic acinar cells that glucocorticoids increased the synthesis, cell content, and mRNA levels for amylase (Logsdon, C.D., Moessner, A., Williams, J.A., and Goldfine, I.D. (1985) J. Cell Biol. 100, 1200-1208). In addition, in these cells glucocorticoids increased the volume density of secretory granules and rough endoplasmic reticulum. In the present study we investigate the effects of glucocorticoids on the receptor binding and biological effects of cholecystokinin (CCK) on AR42J cells. Treatment with 10 nM dexamethasone for 48 h increased the specific binding of 125I-CCK. This increase in binding was time-dependent, with maximal effects occurring after 48 h, and dose-dependent, with a one-half maximal effect elicited by 1 nM dexamethasone. Other steroid analogs were also effective and their potencies paralleled their relative effectiveness as glucocorticoids. Analyses of competitive binding experiments conducted at 4 degrees C to minimize hormone internalization and degradation revealed the presence of a single class of CCK binding sites with a Kd of approximately 6 nM and indicated that dexamethasone treatment nearly tripled the number of CCK receptors/cell with little change in receptor affinity. Treatment with 10 nM dexamethasone increased both basal amylase secretion and the amylase released in response to CCK stimulation. In addition, dexamethasone increased the sensitivity of the cells to CCK. The glucocorticoid decreased the concentration of CCK required for one half-maximal stimulation of amylase secretion from 35 +/- 6 to 8 +/- 1 pM. These data indicate, therefore, that glucocorticoids induce an increase in the number of CCK receptors in AR42J cells, and this increase leads to enhanced sensitivity to CCK.  相似文献   

2.
This paper reviews the relationships between the effects of glucocorticoids on rat pancreatic acinar AR42J cell polyamine levels and cellular growth and differentiation. Glucocorticoids inhibit the growth of AR42J cells. Glucocorticoids either stimulate or inhibit the formation of polyamines in a variety of cell types. Cells require polyamines for normal growth. Therefore, we tested the hypothesis that polyamines mediate the effects of glucocorticoids on AR42J cells. First, to confirm that AR42J cells required polyamines for growth we examined the effects of inhibiting ornithine decarboxylase (ODC). ODC is the most important and generally rate-limiting enzyme in the synthesis of the polyamines. As expected, the ODC inhibitor difluoromethylornithine (DFMO) inhibited AR42J cell DNA synthesis, and the addition of exogenous putrescine reversed this effect. The levels of growth inhibition by glucocorticoids and DFMO treatment were similar. Second, we examined the effects of glucocorticoids on ODC. Surprisingly, glucocorticoids increased levels of AR42J cell ODC mRNA, ODC activity, and putrescine. Glucocorticoids increased these parameters over a similar time-course as they decreased DNA synthesis. Analog specificity studies indicated that a glucocorticoid receptor mediated both the growth inhibitory and ODC stimulatory effects. Dose-response studies indicated, however, that growth inhibition was more sensitive to dexamethasone (DEX) than were ODC levels. Therefore, polyamines do not account for the effects of glucocorticoids on AR42J cell growth. In these cells, glucocorticoids have opposite and independent effects on ODC and growth.  相似文献   

3.
4.
5.
6.
7.
The hepatic acute phase response is accompanied by increased levels of Gal beta 1-4GlcNAc alpha 2,6-sialyltransferase activity in liver and in circulation. Previous studies suggested that cytokines and glucocorticoids mediate the induction of this sialyltransferase activity. In this study the regulation of sialyltransferase expression by dexamethasone in H35 rat hepatoma cells is assessed by Northern hybridization and enzyme activity assays. Exposure of H35 cells to 1 microM dexamethasone for 24 h causes a 3-4-fold enrichment of sialyltransferase mRNA and a corresponding increase in enzymatic activity. The induction of sialyltransferase mRNA begins within 3 h of dexamethasone treatment and reaches a plateau within 24 h. Sialyltransferase mRNA induction is dose dependent; the minimum concentration of dexamethasone necessary for induction is 10(-8) M, and induction was maximal at 10(-6) M. Induction is sensitive to actinomycin D, suggesting that regulation may be exerted by altering the rate of mRNA synthesis. Puromycin and cycloheximide are ineffective in blocking induction, suggesting that de novo protein synthesis is not required for induction. Finally, dexamethasone alone is sufficient for maximum induction of sialyltransferase mRNA. In contrast, maximal induction of alpha 1-acid glycoprotein, a well studied hepatic acute phase reactant, requires both dexamethasone and cytokines, implying that different pathways exist for the induction of participants in the acute phase response.  相似文献   

8.
9.
10.
11.
Expression of the enzyme prostaglandin H synthase in cultured vascular smooth muscle cells required epidermal growth factor (EGF) and type beta transforming growth factor (TGF-beta) and was inhibited by cycloheximide but not actinomycin D. Preincubation with the glucocorticoid dexamethasone (0.5 microM) blocked the EGF-induced expression of prostaglandin H (PGH) synthase. Following dexamethasone addition, levels of hybridizable mRNA for PG synthase were reduced by over 90% within 1 h. After dexamethasone was removed, PG synthase mRNA recovered within 3 h by a process that was not inhibited by actinomycin D. These observations, together with other findings, suggested that the mRNA was being converted into some nonextractable and nontranslated form, probably by binding of a glucocorticoid-induced protein to the conserved 3' untranslated region. In order to investigate further the nature of this phenomenon, seven different literature procedures were evaluated for extracting and determining the PG synthase mRNA. Five of the seven procedures failed to detect hybridizable PG synthase mRNA in glucocorticoid-treated cells. Two procedures, however, recovered mRNA in both glucocorticoid-treated and control cells. A comparison of the protocols indicated that only those methods that incorporate a cationic detergent (sodium N-lauroylsarcosine), instead of anionic detergents in the lysis or homogenization buffers, successfully extract the glucocorticoid-suppressed PG synthase mRNA. Based upon these results two procedures are described, one that optimizes the extraction and determination of the glucocorticoid-suppressed (cryptic) form of the mRNA, and another which optimizes the analysis of normal mRNA without extracting the cryptic form. The results indicate that translational control of PG synthase by glucocorticoids is regulated by converting the mRNA into a cryptic form that is more firmly tissue bound than normal mRNA.  相似文献   

12.
13.
Glucocorticoids stimulate the intestinal absorption of Na+ and water partly by regulation of the Na+/H+ exchanger 3 (NHE3). Previous studies have shown both genomic and nongenomic regulation of NHE3 by glucocorticoids. Serum and glucocorticoid-inducible kinase 1 (SGK1) has been shown to be part of this cascade, where phosphorylation of NHE3 by SGK1 initiates the translocation of NHE3 to the cell surface. In the present work, we examined a series of changes in SGK1 and NHE3 induced by glucocorticoids using human colonic Caco-2 and opossum kidney cells. We found that dexamethasone rapidly stimulated SGK1 mRNAs, but a significant change in protein abundance was not detected. Instead, there was an increase in SGK1 kinase activity as early as at 2 h. An increase in NHE3 protein abundance was not detected until 12 h of dexamethasone exposure, although the transport activity was significantly stimulated at 4 h. These data demonstrate that the changes of SGK1 precede those of NHE3. Chronic regulation (24 h) of NHE3 was blocked completely by prevention of protein synthesis with cycloheximide or actinomycin D and by the glucocorticoid receptor blocker RU486. The acute effect of dexamethasone was similarly abrogated by RU486, but was insensitive to cycloheximide and actinomycin D. Similarly, the stimulation of SGK1 activity by dexamethasone was blocked by RU486 but not by actinomycin D. Together, these data show that the acute effect of glucocorticoids on NHE3 is mediated by a glucocorticoid receptor dependent mechanism that activates SGK1 in a nongenomic manner. Na+/H+ exchanger 3; serum and glucocorticoid-inducible kinase 1  相似文献   

14.
15.
16.
Rab3D is a small GTPase implicated in regulated exocytosis, and is a marker of secretory granules in exocrine cells. We have previously shown that rab3D undergoes reversible carboxyl-methylation in adult rat pancreatic acinar cells, and that carboxyl-methylation of rab3D is developmentally regulated concomitantly with the maturation of the regulated secretory apparatus in rat pancreas. We also observed that dexamethasone treatment of the rat pancreatic acinar tumor cell line, AR42J, led to a significant increase in the size of the unmethylated pool of a rab3-like protein. The current study was designed to further characterize this rab3-like protein. Here we show that AR42J cells express rab3D, and that the protein focuses on 2D gels as two spots with pI values of 4.9 and 5.0. Treatment of AR42J cells with N-acetyl-S-geranylgeranyl-l-cysteine, an inhibitor of carboxyl-methylation, led to a decrease in the basic form of rab3D and a proportional increase in the acidic form. In contrast, N-acetyl-S-farnesyl-l-cysteine, which inhibits carboxyl-methylation of farnesylated proteins, had no effect. Lovastatin, an inhibitor of geranylgeranylation, also induced an accumulation of the acidic form of rab3D. Taken together, these data indicate that rab3D can undergo reversible carboxyl-methylation in AR42J cells by a geranylgeranyl-specific methyltransferase. The 2D gel and immunoblotting analyses indicated that dexamethasone treatment of AR42J cells led to an increase in the proportion of the unmethylated form of rab3D concurrent to inducing a regulated secretory pathway, similar to the rab3D profile change in developing rat pancreas. Our data, along with previous studies done on developing rat pancreas, indicate that the tumor cell line AR42J represents a good model system for studying the regulated secretory pathway, and that carboxyl-methylation of rab3D may play a role in the acquisition of stimulus-secretion coupling.  相似文献   

17.
Rab3D is a low molecular weight GTP-binding protein that associates with secretory granules in exocrine cells. AR42J cells are derived from rat pancreatic exocrine tumor cells and develop an acinar cell-like phenotype when treated with dexamethasone (Dex). In the present study, we examined the role of Rab3D in Dex-treated AR42J cells. Rab3D expression and localization were analyzed by subcellular fractionation and immunoblotting. The role of Rab3D was examined by overexpressing myc-labeled wild-type-Rab3D and a constitutively active form of Rab3D (Rab3D-Q81L) in AR42J cells. We found that Rab3D is predominantly membrane-associated in AR42J cells and co-localizes with zymogen granules (ZG). Following CCK-8-induced exocytosis, amylase-positive ZGs appeared to move towards the periphery of the cell and co-localization between Rab3D and amylase was less complete when compared to basal conditions. Overexpression of WT, but not mutant Rab3D, resulted in an increase in cellular amylase levels. Overexpression of mutant and WT Rab3D did not affect granule morphology, CCK-8-induced secretion, long-term (48 hr) basal amylase release or granule density. We conclude that Rab3D is not involved in agonist-induced exocytosis in AR42J cells. Instead, Rab3D may regulate amylase content in these cells.  相似文献   

18.
The effects of glucocorticoids on somatostatin binding and cAMP response in the rat pancreatic acinar carcinoma AR4-2J cell line were examined. Dexamethasone treatment reduced the number of somatostatin receptors 2.5 fold without any change in receptor affinity. In addition, dexamethasone increased the sensitivity of the cells to somatostatin-inhibited cAMP formation and restored the biphasic pattern of cAMP response to somatostatin previously observed in normal pancreatic acinar cells. Such effect may be associated with the glucocorticoid-promoted cellular pancreatic differentiation of AR4-2J cells.  相似文献   

19.
Modulation of beta 3-adrenergic receptor (beta 3AR) expression by dexamethasone was investigated in the murine 3T3-F442A adipocytic cell line. In untreated cells, a major population of binding sites (62,000-114,000 sites/cell) of low affinity for (-)-[3H] CGP12177 and (-)-[125I]iodocyanopindolol (corresponding to the beta 3AR subtype) was present along with a minor population (6,500-8,000 sites/cell) of sites of high affinity for the radioligands (corresponding to a mixture of the beta 1 and beta 2AR subtypes). Long-term exposure of the cells to 250 nM dexamethasone led to a sharp decrease in beta 3AR density (less than 5,000 sites/cell) which paralleled a diminished potency of the beta 3AR-selective agonists BRL37344 and CGP12177 to stimulate the production of intracellular cAMP. Analysis of RNA by polymerase chain reaction and nuclear run-on assays indicated that dexamethasone inhibited the synthesis of beta 3AR mRNA, resulting in 4-8-fold decrease in the steady-state levels of this mRNA. The down-regulation of beta 3AR protein and cellular mRNA appeared to be mediated by the receptor for glucocorticoids as assessed by the antagonistic action of the anti-glucocorticoid RU38486.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号