首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rich T  Varadaraj A 《PloS one》2007,2(10):e1014
Intranuclear inclusion bodies (IBs) are the histopathologic markers of multiple protein folding diseases. IB formation has been extensively studied using fluorescent fusion products of pathogenic polyglutamine (polyQ) expressing proteins. These studies have been informative in determining the cellular targets of expanded polyQ protein as well as the methods by which cells rid themselves of IBs. The experimental thrust has been to intervene in the process of polyQ aggregation in an attempt to alleviate cytotoxicity. However new data argues against the notion that polyQ aggregation and cytotoxicity are inextricably linked processes. We reasoned that changing the protein context of a disease causing polyQ protein could accelerate its precipitation as an IB, potentially reducing its cytotoxicity. Our experimental strategy simply exploited the fact that conjoined proteins influence each others folding and aggregation properties. We fused a full-length pathogenic ataxin-1 construct to fluorescent tags (GFP and DsRed1-E5) that exist at different oligomeric states. The spectral properties of the DsRed1-E5-ataxin-1 transfectants had the additional advantage of allowing us to correlate fluorochrome maturation with cytotoxicity. Each fusion protein expressed a distinct cytotoxicity and IB morphology. Flow cytometric analyses of transfectants expressing the greatest fluorescent signals revealed that the DsRed1-E5-ataxin-1 fusion was more toxic than GFP fused ataxin-1 (31.8+/-4.5% cell death versus 12.85+/-3%), although co-transfection with the GFP fusion inhibited maturation of the DsRed1-E5 fluorochrome and diminished the toxicity of the DsRed1-E5-ataxin-1 fusion. These data show that polyQ driven aggregation can be influenced by fusion partners to generate species with different toxic properties and provide new opportunities to study IB aggregation, maturation and lethality.  相似文献   

2.
探讨了荧光蛋白作为报告蛋白用于蛋白质转运系统研究的可行性 ,结果表明海葵红色荧光蛋白聚集在细胞质内 ,不能转运至周质空间。而水母绿色荧光蛋白在Tat信号肽和Tat转运酶的共同作用下 ,以折叠形式转运至周质空间。通过荧光定量分析表明信号肽保守序列中的双精氨酸是保证绿色荧光蛋白转运及转运效率所必需的 ,且第二个精氨酸比第一个精氨酸更为重要。同时 ,揭示了Tat信号肽需要一定的高级结构才能行使功能 ;Tat信号肽不仅引导蛋白质的转运 ,而且也参与蛋白质的折叠。因此 ,绿色荧光蛋白是非常理想的报告蛋白 ,可用于研究Tat系统 ,但是海葵红色荧光蛋白易于聚集而不适合于此目的。  相似文献   

3.
The red fluorescent protein DsRed2 is a useful fusion tag for various proteins, together with the enhanced green fluorescent protein (EGFP). These chromoproteins have spectral properties that allow simultaneous distinctive detection of tagged proteins in the same single cells by dual color imaging. We used them for tagging a secretory protein, human interferon-beta (IFN-beta). Expression plasmids for human IFN-beta tagged with DsRed2 or with EGFP at the carboxyl terminal were constructed and their coexpression was examined in Mardin-Darby canine kidney epithelial cells. Although maturation of DsRed2 for coloration was slow and the color intensity was weak compared with EGFP, low temperature treatment (20 degrees C) allowed DsRed2-tagged human IFN-beta to be detected in the cells using color imaging. Consequently, the two chimeric proteins were shown to be colocalized in the same single cells by dual color confocal microscopy. This approach will be useful for investigating subcellular localization of not only cell resident proteins but also secretory proteins.  相似文献   

4.
We have constructed a matched set of binary vectors designated pGD, pGDG and pGDR for the expression and co-localization of native proteins and GFP or DsRed fusions in large numbers of plant cells. The utility of these vectors following agroinfiltration into leaves has been demonstrated with four genes from Sonchus yellow net virus, a plant nucleorhabdovirus, and with a nucleolar marker protein. Of the three SYNV proteins tested, sc4 gave identical localization patterns at the cell wall and nucleus when fused to GFP or DsRed. However, some differences in expression patterns were observed depending on whether DsRed or GFP was the fusion partner. In this regard, the DsRed:P fusion showed a similar pattern of localization to GFP:P, but localized foci appeared in the nucleus and near the periphery of the nucleus. Nevertheless, the viral nucleocapsid protein, expressed as a GFP:N fusion, co-localized with DsRed:P in a subnuclear locale in agreement with our previous observations (Goodin et al., 2001). This locale appears to be distinct from the nucleolus as indicated by co-expression of the N protein, DsRed:P and a nucleolar marker AtFib1 fused to GFP. The SYNV M protein, which is believed to be particularly prone to oligomerization, was detectable only as a GFP fusion. Our results indicate that agroinfiltration with bacteria containing the pGD vectors is extremely useful for transient expression of several proteins in a high proportion of the cells of Nicotiana benthamiana leaves. The GFP and DsRed elements incorporated into the pGD system should greatly increase the ease of visualizing co-localization and interactions of proteins in a variety of experimental dicotyledonous hosts.  相似文献   

5.
Simultaneous expression of multiple proteins in plants finds ample applications. Here, we examined the biotechnological application of native kex2p-like protease activity in plants for coordinate expression of multiple secretory proteins from a single transgene encoding a cleavable polyprotein precursor. We expressed a secretory red fluorescent protein (DsRed) or human cytokine (GMCSF), fused to a downstream green fluorescent protein (GFP) by a linker containing putative recognition sites of the kex2p-like protease in tobacco cells and referred to them as RKG and GKG cells, respectively. Our analyses showed that GFP is cleaved off the fusion proteins and secreted into the media by both RKG and GKG cells. The cleaved GFP product displayed the expected fluorescence characteristics. Using GFP immunoprecipitation and fluorescence analysis, the cleaved DsRed product in the RKG cells was found to be functional as well. However, DsRed was not detected in the RKG culture medium, possibly due to its tetramer formation. Cleaved and biologically active GMCSF could also be detected in GKG cell extracts, but secreted GMCSF was found to be only at a low level, likely because of instability of GMCSF protein in the medium. Processing of polyprotein precursors was observed to be similarly effective in tobacco leaf, stem and root tissues. Importantly, we also demonstrated that, via agroinfiltration, polyprotein precursors can be efficiently processed in plant species other than tobacco. Collectively, our results demonstrate the utility of native kex2p-like protease activity for the expression of multiple secretory proteins in plant cells using cleavable polyprotein precursors containing kex2p linker(s).  相似文献   

6.
DsRed, a recently cloned red fluorescent protein, has attracted great interest as an expression tracer and fusion partner for multicolor imaging. We report that three-photon excitation (lambda <760 nm) rapidly changes the fluorescence of DsRed from red to green when viewed subsequently by conventional (one-photon) epifluorescence. Mechanistically, three-photon excitation (lambda <760 nm) selectively bleaches the mature, red-emitting form of DsRed, thereby enhancing emission from the immature green form through reduction of fluorescence resonance energy transfer (FRET). The "greening" effect occurs in live mammalian cells at the cellular and subcellular levels, and the resultant color change persists for >30 h without affecting cell viability. This technique allows individual cells, organelles, and fusion proteins to be optically marked and has potential utility for studying cell lineage, organelle dynamics, and protein trafficking, as well as for selective retrieval of cells from a population. We describe optimal parameters to induce the color change of DsRed, and demonstrate applications that show the potential of this optical highlighter.  相似文献   

7.
Green fluorescent protein (GFP) is widely used as an excellent reporter module of the fusion proteins. The unique structure of GFP allows isolation of the active fluorescent protein directly from the crude cellular sources by extraction with organic solvents. We demonstrated the stable expression of four short polypeptides fused to GFP in Escherichia coli cells, including antimicrobial cationic peptides, which normally kill bacteria. EGFP module protected fusion partners from the intracellular degradation and allowed the purification of the chimerical proteins by organic extraction. The nature of the polypeptide fused to GFP, as opposed to the order of GFP and the polypeptide modules in the fusion protein, influenced the efficiency of the described purification technique.  相似文献   

8.
9.
The chloroplast targeting transit sequence from potato granule bound starch synthase (gbss) was used to direct the accumulation of recombinant proteins to the plastid stroma. The potato gbss transit sequence was fused to the N-terminus of the green fluorescent protein (GFP) and the Catharanthus roseus strictosidine synthase (Str1) enzyme. Fluorescence microscopy confirmed that the recombinant gbss-GFP fusion protein was exclusively targeted to the plastid stroma in tobacco suspension cells, demonstrating that the transit sequence was functional in vivo. The Str1 fusion protein accumulated to high levels in plastids isolated from transgenic plants. We conclude that the potato gbss transit sequence is functional and directs import of recombinant proteins into the chloroplast stroma.  相似文献   

10.
The zebrafish embryo is especially valuable for cell biological studies because of its optical clarity. In this system, use of an in vivo fluorescent reporter has been limited to green fluorescent protein (GFP). We have examined other fluorescent proteins alone or in conjunction with GFP to investigate their efficacy as markers for multi-labeling purposes in live zebrafish. By injecting plasmid DNA containing fluorescent protein expression cassettes, we generated single-, double-, or triple-labeled embryos using GFP, blue fluorescent protein (BFP, a color-shifted GFP), and red fluorescent protein (DsRed, a wild-type protein structurally related to GFP). Fluorescent imaging demonstrates that GFP and DsRed are highly stable proteins, exhibiting no detectable photoinstability, and a high signal-to-noise ratio. BFP demonstrated detectable photoinstability and a lower signal-to-noise ratio than either GFP or DsRed. Using appropriate filter sets, these fluorescent proteins can be independently detected even when simultaneously expressed in the same cells. Multiple labels in individual zebrafish cells open the door to a number of biological avenues of investigation, including multiple, independent tags of transgenic fish lines, lineage studies of wild-type proteins expressed using polycistronic messages, and the detection of protein-protein interactions at the subcellular level using fluorescent protein fusions.  相似文献   

11.
The genetically encoded FRET-pair was developed on the basis of terbium-binding peptide and red fluorescent protein DsRed2. To study fluorescence resonance energy transfer within the FRET-pair, the engineered construction was obtained, where sequences of terbium-binding peptide and red fluorescent protein DsRed2 were fused in single reading frame. The expression of this construction in strain E. coli BL21(DE3) was studied and conditions of synthesis, isolation, and purification of recombinant protein were optimized. The hydrodynamic radius of hybrid protein was determined by the method of dynamic diffusion. Energy transfer between sensitized terbium and red fluorescent protein was confirmed by the methods of fluorescence spectroscopy. The obtained FRET-pair may be used both for studies in vitro and as reporters in living cells.  相似文献   

12.
Transduction of proteins and other macromolecules constitutes a potent technology to analyze cell functions and to achieve therapeutic interventions. In general, fusion proteins with protein transduction domains, such as TAT, are produced in a bacterial expression system. Here we describe the generation of a mammalian expression vector coding for TAT-EGFP fusion protein. Transfection of CHO-K1 cells by this vector and subsequent selection by Zeocin resulted in cell lines that express and secrete EGFP, a variant of the green fluorescent protein GFP. The ultimate cell line was produced by first cloning the stable integrants and subsequent selection of EGFP-expressing cells by flow cytometric sorting. In the resulting cell line approximately 98% of cells express EGFP. Using the same methodology, we generated cell lines that express DsRed fluorescent protein. The advantages of using such a mammalian expression system include the ease of generating TAT fusion proteins and the potential for sustained production of such proteins in vitro and, potentially, in vivo.  相似文献   

13.
Recombinant proteins are commonly expressed in fusion with an affinity tag to facilitate purification. We have in the present study evaluated the possible use of the human glutaredoxin 2 (Grx2) as an affinity tag for purification of heterologous proteins. Grx2 is a glutathione binding protein and we have shown in the present study that the protein can be purified from crude bacterial extracts by a one-step affinity chromatography on glutathione-Sepharose. We further showed that short peptides could be fused to either the N- or C-terminus of Grx2 without affecting its ability to bind to the glutathione column. However, when Grx2 was fused to either the 27 kDa green fluorescent protein or the 116 kDa beta-galactosidase, the fusion proteins lost their ability to bind glutathione-Sepharose. Insertion of linker sequences between the Grx2 and the fusion protein did not restore binding to the column. In summary, our findings suggest that Grx2 may be used as an affinity tag for purification of short peptides and possibly also certain proteins that do not interfere with the binding to glutathione-Sepharose. However, the failure of purifying either green fluorescent protein or beta-galactosidase fused to Grx2 suggests that the use of Grx2 as an affinity tag for recombinant protein purification is limited.  相似文献   

14.
目的建立一种动态检测活细胞内泛素-蛋白酶体系统活性的方法。方法将表达绿色荧光蛋白(GFP)或红色荧光蛋白(DsRed2)的质粒分别改建为表达带有内泛素-蛋白酶体系统降解信号CL1的GFP或DsRed2的pGFP^u或pDsRed2质粒,然后转染HEK293细胞,通过G418筛选得到稳定表达GFP^u或DsRed2^u的细胞系。在蛋白酶体抑制N—Acetyl—Leu-Leu—Norleu—al(ALLN)处理GFP^u或DsRed2^u细胞后,应用免疫印记技术检测细胞内GFP或DsRed,含量的变化,应用荧光显微镜和激光扫描共聚焦显微镜技术观察GFP或DsRed,荧光强度的变化。结果ALLN处理能使GFP“和DsRed2^u细胞内GFP和DsRed。含量明显增加,荧光强度显著增强,并呈现明显的剂量/时间-效应关系。结论本文成功地建立了检测内泛素-蛋白酶体系统活性的方法,该方法能有效地对活细胞的内泛素-蛋白酶体系统活性进行实时动态检测。  相似文献   

15.

Background

Mitochondria, the main suppliers of cellular energy, are dynamic organelles that fuse and divide frequently. Constraining these processes impairs mitochondrial is closely linked to certain neurodegenerative diseases. It is proposed that functional mitochondrial dynamics allows the exchange of compounds thereby providing a rescue mechanism.

Methodology/Principal Findings

The question discussed in this paper is whether fusion and fission of mitochondria in different cell lines result in re-localization of respiratory chain (RC) complexes and of the ATP synthase. This was addressed by fusing cells containing mitochondria with respiratory complexes labelled with different fluorescent proteins and resolving their time dependent re-localization in living cells. We found a complete reshuffling of RC complexes throughout the entire chondriome in single HeLa cells within 2–3 h by organelle fusion and fission. Polykaryons of fused cells completely re-mixed their RC complexes in 10–24 h in a progressive way. In contrast to the recently described homogeneous mixing of matrix-targeted proteins or outer membrane proteins, the distribution of RC complexes and ATP synthase in fused hybrid mitochondria, however, was not homogeneous but patterned. Thus, complete equilibration of respiratory chain complexes as integral inner mitochondrial membrane complexes is a slow process compared with matrix proteins probably limited by complete fusion. In co-expressing cells, complex II is more homogenously distributed than complex I and V, resp. Indeed, this result argues for higher mobility and less integration in supercomplexes.

Conclusion/Significance

Our results clearly demonstrate that mitochondrial fusion and fission dynamics favours the re-mixing of all RC complexes within the chondriome. This permanent mixing avoids a static situation with a fixed composition of RC complexes per mitochondrion.  相似文献   

16.
Mitochondria in plant cells undergo fusion and fission frequently. Although the mechanisms and proteins of mitochondrial fusion are well known in yeast and mammalian cells, they remain poorly understood in plant cells. To clarify the physiological requirements for plant mitochondrial fusion, we investigated the fusion frequency of mitochondria in tobacco cultured cells using the photoconvertible fluorescent protein Kaede and some physiological inhibitors. The latter included two uncouplers, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial ATP synthase, oligomycin, and an actin polymerization inhibitor, latrunculin B (Lat B). The frequency of mitochondrial fusion was clearly reduced by DNP, CCCP and oligomycin, but not by Lat B, although Lat B severely inhibited mitochondrial movement. Moreover, DNP, CCCP and oligomycin evidently lowered the cellular ATP levels. These results indicate that plant mitochondrial fusion depends on the cellular ATP level, but not on actin polymerization.  相似文献   

17.
The use of fluorescent proteins, particularly when genetically fused to proteins of biological interest, have greatly advanced many flow cytometry research applications. However, there remains a major limitation to this methodology in that only total cellular fluorescence is measured. Commonly used fluorescent proteins (e.g. EGFP and its variants) are fluorescent whether the fusion protein exists on the surface or in sub-cellular compartments. A flow cytometer cannot distinguish between these separate sources of fluorescence. This can be of great concern when using flow cytometry, plate readers or microscopy to quantify cell surface receptors or other surface proteins genetically fused to fluorescent proteins. Recently developed fluorogen activating proteins (FAPs) solve many of these issues by allowing the selective visualization of only those cell surface proteins that are exposed to the extracellular milieu. FAPs are GFP-sized single chain antibodies that specifically bind to and generate fluorescence from otherwise non-fluorescent dyes ('activate the fluorogen'). Like the fluorescent proteins, FAPs can be genetically fused to proteins of interest. When exogenously added fluorogens bind FAPs, fluorescence immediately increases by as much as 20,000-fold, rendering the FAP fusion proteins highly fluorescent. Moreover, since fluorogens can be made membrane impermeant, fluorescence can be limited to only those receptors expressed on the cell surface. Using cells expressing beta-2 adrenergic receptor (β2AR) fused at its N-terminus to a FAP, flow cytometry based receptor internalization assays have been developed and characterized. The fluorogen/FAP system is ideally suited to the study of cell surface proteins by fluorescence and avoids drawbacks of using receptor/fluorescent protein fusions, such as internal accumulation. We also briefly comment on extending FAP-based technologies to the study of events occurring inside of the cell as well.  相似文献   

18.
Mizuno H  Sawano A  Eli P  Hama H  Miyawaki A 《Biochemistry》2001,40(8):2502-2510
The biochemical and biophysical properties of a red fluorescent protein from a Discosoma species (DsRed) were investigated. The recombinant DsRed expressed in E. coli showed a complex absorption spectrum that peaked at 277, 335, 487, 530, and 558 nm. Excitation at each of the absorption peaks produced a main emission peak at 583 nm, whereas a subsidiary emission peak at 500 nm appeared with excitation only at 277 or 487 nm. Incubation of E. coli or the protein at 37 degrees C facilitated the maturation of DsRed, resulting in the loss of the 500-nm peak and the enhancement of the 583-nm peak. In contrast, the 500-nm peak predominated in a mutant DsRed containing two amino acid substitutions (Y120H/K168R). Light-scattering analysis revealed that DsRed proteins expressed in E. coli and HeLa cells form a stable tetramer complex. DsRed in HeLa cells grown at 37 degrees C emitted predominantly at 583 nm. The red fluorescence was imaged using a two-photon laser (Nd:YLF, 1047 nm) as well as a one-photon laser (He:Ne, 543.5 nm). When fused to calmodulin, the red fluorescence produced an aggregation pattern only in the cytosol, which does not reflect the distribution of calmodulin. Despite the above spectral and structural complexity, fluorescence resonance energy transfer (FRET) between Aequorea green fluorescent protein (GFP) variants and DsRed was achieved. Dynamic changes in cytosolic free Ca2+ concentrations were observed with red cameleons containing yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), or Sapphire as the donor and RFP as the acceptor, using conventional microscopy and one- or two-photon excitation laser scanning microscopy. Particularly, the use of the Sapphire-DsRed pair rendered the red cameleon tolerant of acidosis occurring in hippocampal neurons, because both Sapphire and DsRed are extremely pH-resistant.  相似文献   

19.
Generation of mammalian cells stably expressing multiple exogenous genes is currently difficult. Here we provide a strategy to facilitate this process. First, a helper vector p2A containing three coding sequences for viral 2A peptides was constructed. Three reporter genes coding for red fluorescent protein (DsRed), firefly luciferase (Fluc) and enhanced green fluorescent protein (EGFP) were then inserted into p2A to form a fusion open reading frame that was subsequently subcloned into a lentiviral vector. After transduction, EGFP-positive 293T cells were selected by fluorescence activated cell sorting. The expression of exogenous genes in selected cells was stable for more than 15 passages, and EGFP-positive cells were over 95%. The efficient cleavages of 2A-peptide mediated polyprotein were also observed and all three reporter proteins were functional. Thus, a stable DsRed/Fluc/EGFP-coexpressing cell line was readily established within a short time. The strategy could be useful for basic research and protein production. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
We have investigated the question of the presence of a cap structure located at the top of the F(1) alpha(3)beta(3) hexamer of the yeast mitochondrial F(1)F(0)-ATP synthase complex. Specifically, we sought to determine whether the putative cap has a rigid structure and occludes the central shaft space formed by the alpha(3)beta(3) hexamer or alternatively whether the cap is more flexible permitting access to the central shaft space under certain conditions. Thus, we sought to establish whether subunit gamma, an essential component of the F(1) central stalk housed within the central shaft space and whose N and C termini would both lie beneath a putative cap, could be fused at its C terminus to green fluorescent protein (GFP) without loss of enzyme function. The GFP moiety serves to report on the integrity and location of fusion proteins containing different length polypeptide linkers between GFP and subunit gamma, as well as being a potential occluding structure in itself. Functional incorporation of subunit gamma-GFP fusions into ATP synthase of yeast cells lacking native subunit gamma was demonstrated by the ability of intact complexes to hydrolyze ATP and retain sensitivity to oligomycin. Our conclusion is that the putative cap structure cannot be an inflexible structure, but must be of a more flexible nature consistent with the accommodation of subunit gamma-GFP fusions within functional ATP synthase complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号