首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee I  Amasino RM 《Plant physiology》1995,108(1):157-162
We have compared the flowering response to vernalization, photoperiod, and far-red (FR) light of the Columbia (Col) and Landsberg erecta (Ler) ecotypes of Arabidopsis into which the flowering-time locus FRIGIDA (FRI) has been introgressed with that of the wild types Col, Ler, and San Feliu-2 (Sf-2). In the early-flowering parental ecotypes, Col and Ler, a large decrease in flowering time in response to vernalization was observed only under short-day conditions. However, Sf-2 and the Ler and Col genotypes containing FRI showed a strong response to vernalization when grown in either long days or short days. Although vernalization reduced the responsiveness to photoperiod, plants vernalized for more than 80 d still showed a slight photoperiod response. The effect of FRI on flowering was eliminated by 30 to 40 d of vernalization; subsequently, the response to vernalization in both long days and short days was the same in Col and Ler with or without FRI. FR-light enrichment accelerated flowering in all ecotypes and introgressed lines. However, the FR-light effect was most conspicuous in the FRI-containing plants. Saturation of the vernalization effect eliminated the effect of FR light on flowering, although vernalization did not eliminate the increase of petiole length in FR light.  相似文献   

2.
Factorial combinations of three photoperiods (10, 13 and 16h), two day temperatures (18 and 28 °C) and two night temperatures(5 and 13 °C) were imposed on nodulated plants of six diversegenotypes of faba bean (Vicia faba L.). Plants were grown inpots in growth cabinets from both vernalized (1.5±0.5°C for 30 d) and non-vernalized seeds. The times from sowingto the appearance of first open flowers (f) were recorded. Seedvernalization decreased the subsequent time taken to flowerin almost all genotype x growing environment combinations (theexceptions were plants of the cv. Maris Bead grown in threecooler, short-day regimes). The influence of temperature andphotoperiod on the rate of flowering was quantified, using amodel applied previously to other long-day species of grainlegume in which positive linear relations between both temperatureand photoperiod and the rate of progress towards flowering areassumed to apply. A significant positive linear response ofrate of progress towards flowering to limited ranges of meandiurnal temperature was detected in all six genotypes, but inthree genotypes (Syrian Local Large, Aquadulce and Maris Bead)the 28 °C day temperature reduced the rate of progress towardsflowering - suggesting that the optimum temperature for floweringin these genotypes is below 28 °C. In four genotypes (MarisBead, Giza-4, Aquadulce and BPL 1722) a significant positiveresponse to photoperiod, typical of quantitative long-day plants,was observed only in plants grown from vernalized seeds. Incontrast, plants of the genotype Zeidab Local grown from bothnon-vernalized and vernalized seeds showed the same positiveresponse to photoperiod, whereas plants of the land-race SyrianLocal Large were consistently unresponsive to photoperiod. Theimplications of this range of responses amongst diverse genotypesare discussed in relation to screening germplasm. Vicia faba, faba bean, flowering, photoperiod, temperature, seed vernalization, germplasm screening  相似文献   

3.
The recent whole-plant research reviewed suggests the commonly applied paradigms about vernalization and photoperiodism should be replaced. A simple equation based on new paradigms predictively models with excellent fit the published days to flowering of at least six plant species. The paradigm that the response to photoperiod of the days to flowering (DTF) of crop plants is revealed adequately by comparing a range of photoperiods at just one temperature should be replaced with the following concepts. There is a base (lowest) temperature below which photoperiod gene activity does not occur, and, when the temperature is high enough to allow activity, there is always a photoperiod × temperature × genotype interaction effect on the days to flowering. Similarly, the paradigm that vernalization gene activity occurs at low temperature and promotes development should be replaced as follows. Vernalization gene activity occurs only if the temperature is above a base (lowest) temperature that allows activity of the vernalization gene(s), and this activity delays development to flowering. Development to flowering is accelerated by low-temperature vernalization, because the low temperature prevents vernalization gene activity, thereby preventing delay of the DTF. The phenomena called long-day (LD) vernalization and short-day (SD) vernalization are reinterpreted as follows. The apparent replacement by short or long daylength of a requirement for low-temperature vernalization is actually a replacement by the low temperature of a requirement for long or short day. Just as true low-temperature vernalization results from prevention of vernalization gene activity, these SD and LD promotions of the DTF occur because the photoperiod gene activity is prevented by the low temperature. Rather than requiring an environment that induces flowering, an inherent capability for rapid development to flowering is expressed, if there is no delay of the DTF by the activity of either or both of the vernalization and photoperiod gene(s). All the above-mentioned effects of temperature are due to the Q10 effect on the specified photoperiod or vernalization gene activity. The effect of thermal time (due to the accumulated growing degree days) is the integrated Q10 effect on all additional genes that partially control the rate of development to the reproductive stage.  相似文献   

4.
Grafting experiments with several genotypes provide evidencethat vernalization acts through at least two mechanisms. Vernalization of the stock promoted flowering by 26 nodes ingenotype If e Sn Hr and 5.5 nodes in genotype If e Sn hr buthad no detectable effect in genotype If e sn hr. Cold treatmentappears to cause a higher ratio of promoter to inhibitor, atleast in part, through low temperature repression of Sn activity.This mechanism is particularly evident in the cotyledons sincethey form a major area of Sn activity during vernalization.Continuous light was shown previously to prevent Sn forminginhibitor. It seems therefore that both photoperiod and vernalizationhave an effect through the Sn gene. Vernalization of the shoot promoted flowering by 19 nodes ingenotype If e Sn Hr, 3 nodes genotype If e Sn hr, and 1 nodein genotype If e sn hr1 grafted to an If e Sn hr stock. Theshoot effect may result from one or possibly two mechanisms.Firstly, vernalization may lower the threshold ratio of promoterto inhibitor required at the apex for floral initiation. Thesame change in threshold could result in changes in the floweringnode of quite different magnitude depending on the rate of changein the hormonal levels in the different genotypes. Secondly,vernalization may disturb the ageing process relative to theplastochronic age leading to an earlier (nodewise) decline ininhibitor level.  相似文献   

5.
Exogenous gibberellin A3(GA3) reduced the number of leaf nodesat flowering and time to flowering and increased the stem heightat flowering in three genotypes of spring rape (Brassica napusvar.annua L.). The responses to GA3were similar to those forlong days (LD) and low-temperature treatments, suggesting thatthe effect of photoperiod and the vernalization response areprobably mediated through gibberellins. The response to exogenousGA3was greatest in non-cold-treated plants in short days (SD)suggesting that endogenous GAs are limiting in these conditions.CCC, an inhibitor of gibberellin biosynthesis, caused a smallincrease in the number of leaf nodes at flowering and time toflowering and a small decrease in the stem height at flowering,but unexpectedly, its effect was hardly influenced by the applicationof exogenous GA3. Genotypes that showed the clearest responsesto the treatments with regard to the number of leaf nodes atflowering and time to flowering did not show the clearest responseswith regard to the stem height at flowering; the pattern ofresponses of the number of leaf nodes at flowering and timeto flowering was distinct from that of stem height at flowering.This indicates that flower formation and stem elongation areseparable developmental processes which may be controlled bydifferent endogenous gibberellins, different levels of a specificendogenous gibberellin, or different responses to gibberellin.Copyright 1999 Annals of Botany Company Brassica napus var. annua, gibberellin, photoperiod, spring rape, vernalization.  相似文献   

6.
Populations of four co-habiting annual grass species Bromusmollis L. (Soft brome), Hordeum hystrix Roth (Mediterraneanbarley grass), Lolium rigidum Gaud. (Wimmera ryegrass) and Vulpiabromoides (L.) S. F. Gray (Squirrel-tail fescue) were examinedfor the presence and comparative levels of vernalization andphotoperiod response. This was evaluated as the number of daysfrom sowing to heading in both long (16 h) and short (normal,over-winter) photoperiods at two levels of temperature. Wide variation among the species in both vernalization and photoperiodicresponse was detected. L. rigidum possessed a high level ofvernalization response and was comparatively sensitive to photoperiodwhile V. bromoides possessed little or no vernalization responseand was comparatively insensitive to photoperiod. B. mollisand H. hystrix appeared to be intermediate between these twospecies for both responses. There were wide differences in timeto heading under long photoperiod (16 h) and high temperature(20 °C) of plants derived from seed of three of the speciesripened under non-vernalizing temperatures. This variation indicatesthe likely existence of genetic differences in vernalizationresponse between plants of these populations. The implications of these findings to the adaptability of thesespecies to the Australian environment have been outlined. Bromus mollis L., soft brome, Hordeum hystrix Roth, Mediterranean barley grass, Lolium rigidum Gaud, Wimmera ryegrass, Vulpia bromoides (L.) S. F. Gray, Squirrel-tail fescue, flowering, vernalization, photoperiod, temperature  相似文献   

7.
The initiation of flowering is a crucial trait that allows temperate plants to flower in the favourable conditions of spring. The timing of flowering initiation is governed by two main mechanisms: vernalization that defines a plant's requirement for a prolonged exposure to cold temperatures; and photoperiod sensitivity defining the need for long days to initiate floral transition. Genetic variability in both vernalization and photoperiod sensitivity largely explains the adaptability of cultivated crop plants such as bread wheat (Triticum aestivum L.) to a wide range of climatic conditions. The major genes controlling wheat vernalization (VRN1, VRN2, and VRN3) and photoperiod sensitivity (PPD1) have been identified, and knowledge of their interactions at the molecular level is growing. However, the quantitative effects of temperature and photoperiod on these genes remain poorly understood. Here it is shown that the distinction between the temperature effects on organ appearance rate and on vernalization sensu stricto is crucial for understanding the quantitative effects of the environmental signal on wheat flowering. By submitting near isogenic lines of wheat differing in their allelic composition at the VRN1 locus to various temperature and photoperiod treatments, it is shown that, at the whole-plant level, the vernalization process has a positive response to temperature with complex interactions with photoperiod. In addition, the phenotypic variation associated with the presence of different spring homoeoalleles of VRN1 is not induced by a residual vernalization requirement. The results demonstrate that a precise definition of vernalization is necessary to understand and model temperature and photoperiod effects on wheat flowering. It is suggested that this definition should be used as the basis for gene expression studies and assessment of functioning of the wheat flowering gene network, including an explicit account of the quantitative effect of environmental variables.  相似文献   

8.
Role of gibberellins in stem elongation and flowering in radish   总被引:6,自引:4,他引:2       下载免费PDF全文
Suge H  Rappaport L 《Plant physiology》1968,43(8):1208-1214
The relationship among gibberellins, CCC, vernalization, and photoperiod in the flowering response of radish, Raphanus sativus L., cv. Miyashige-sofuto, was studied. The optimal condition for flowering was vernalization and a 16-hour photoperiod; GA3 had no additional effect. Gibberellin A3 (60 μg total) was not able to induce flowering in nonvernalized plants grown on 8-hour days, but it did increase the percentage of nonvernalized plants that flowered under long days from 60 to 100.

Gibberellin content of vernalized seedlings increased within the first 24 hours after seedlings were transferred to the greenhouse. Content reached a peak in the first 4 days after transfer and thereafter remained constant. Essentially no gibberellin was found in 2 day-old non-vernalized (control) seedlings of comparable size to the vernalized ones. Gibberellin content in the controls reached a peak on the fourth day of growth in the greenhouse; thereafter, it decreased steadily.

Bolting was inhibited slightly by CCC when applied during vernalization; it was almost completely inhibited when CCC was applied after seed vernalization. Extraction experiments revealed that CCC actually reduced the gibberellin content when applied during or after vernalization. The dwarfing agent, however, had essentially no effect on flowering. We concluded that gibberellins likely play a direct role in bolting of `Miyashige-sofuto' radish, but probably are not directly functional in initiating flowering.

  相似文献   

9.
Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals(photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature.  相似文献   

10.
Flowering of Arabidopsis thaliana (L.) HEYNH., var. "Stockholm",plants, raised from vernalized seeds, may be modified by thephotoperiodic conditions or a short (1 week) exposure to hightemperature (32°C) following vernalization, depending onthe duration of the cold treatment. When vernalization is partial(1 to 4 weeks at 4°C), both short days (8hr light) and hightemperature have a devernalizing effect, but when the cold requirementhas been fully satisfied, after 5 to 6 weeks at 4°C, devernalizationis no longer possible. There is no interaction between photoperiodand high temperature. Fully vernalized plant flower in bothlong and short days, although flowering is delayed in shortdays. This delay is not a photoperiodic effect, however, butmay be ascribed to the decreased radiant energy available inan 8-hr photoperiod. Thus, fully vernalized Arabidopsis plantsare day-neutral. (Received November 5, 1969; )  相似文献   

11.
Heide  O. M. 《Annals of botany》2001,87(6):795-804
Flowering responses of two Australian and six Norwegian populationsof Poa annua and their putative ancestors P. infirma and P.supina were studied in controlled environments. The two Australianpopulations originating from suburban parks in Canberra hadopposite daylength flowering responses across the range of temperaturestested (9–21 °C), one being a quantitative short-day(SD) plant with no response to vernalization, the other a quantitativelong-day (LD) plant with a quantitative vernalization requirement(winter annual type). Variation in earliness of flowering withinthe former population was shown to be genetically determined,and testing of selfed progenies indicated that the populationis an aggregate of several largely homozygous lines with divergentflowering responses. Two lowland populations from southern Norwaywere both quantitative LD plants with no vernalization response,while two alpine snowbed populations from southern Norway andtwo high-latitude, subarctic populations from northern Norwaywere quantitative SD plants with an obligatory plant vernalizationor SD requirement for flowering. Two populations of P. supinaexhibited the same flowering responses as the alpine and high-latitudepopulations of P. annua with an obligatory plant vernalizationor SD requirement for flowering. A combination of SD and lowtemperature (9–12 °C) for 8–10 weeks was optimalfor induction and inflorescence initiation. On the other hand,P. infirma was found to be an early-flowering quantitative SDplant which flowered freely across the range of temperatures(9–21 °C) as a typical summer annual. The experimentsdemonstrate that virtually any kind of photoperiodic and vernalizationresponses can be found among populations of P. annua. Theseversatile flowering responses reflect the contrasting floweringresponses of P. supina and P. infirma, and add strong supportto the hypothesis that P. annua has originated from these species.Copyright 2001 Annals of Botany Company Adaptation, evolution, flowering, Poa annua, P. infirma, P. supina, photoperiod, vernalization  相似文献   

12.
Germination responses of the seeds of Amaranthus retroflexusL. were affected by the photoperiod, temperature, and levelof solar radiation experienced by their parent plants. Seedsfrom parents grown continuously in short days (SD, 8 h) lostpost-harvest dormancy more rapidly and had a higher dark germination,as well as a greater responsiveness (at 30?C) to pretreatmentsat low temperature (5 or 10?C) and to short illuminations, thanseeds from parents grown continuously in long days (LD, 16 h).Dark germination and responsiveness of the seeds to promotivetreatments were both higher when their parents were transferredat flowering from LD to SD than when grown continuously in LD.These responses were lower when their parents were similarlytransferred from SD to LD than when grown continuously in SD.The promotive effects of parental post-flowering SD on darkgermination (at 30?C) were enhanced by reduction of parentaltemperature (from 27/22?C to 22/17?C), but the responsivenessof the seeds to low temperature pretreatment was reduced. Inflorescencesdeveloping in LD produced seed with higher germinability whenfloweringwas not induced (LD throughout) than when it was induced (eitherby SD till flowering, or by three SD cycles when 4–5 leavesappeared). Reduced levels of solar radiation had opposite effectsin the different parental photoperiods: dark germination andthe responsiveness to low temperature pretreatments were reducedin LD, but were increased in SD. Differences in the germination responses resulting from differencesin the parental environment could not be correlated with differencesin seed coat thickness or seed dry weight.  相似文献   

13.
Two tetraploid (Triticum turgidum L.emend gr. turgidum and gr.durum) and five hexaploid wheats (Triticum x aestivum L. emendgr. aestivum) with reported tendencies for ‘branched heads’(supernurnerary spikelets) exhibited variation in its expressionunder different vernalization photoperiod and temperature regimes. Two main types of supernumerary spikelets were identified, multiplesessile spikelets (MSS) with two or more complete spikeletsat a rachis node and indeterminate rachilla spikelets (IRS)with two to 13 spikelets on an extended rachilla. The degree of supernumerary spikelet expression in wheats withvernalization response differed from those without. Short photoperiods(9–14 h) both outdoors and in a glasshouse environment,were more conducive to supernumerary spikelet expression than24 h photoperiod in both environments. The 24 h photoperiodglasshouse environment (higher mean temperatures) was leastconducive to its expression except in lines with a strong vernalizationresponse. The high stability of supernumerary spikelet expression in certaingenotypes in the different environments indicated the feasibilityof incorporating this character in breeding and selecting commercialwheats to increase grain number per head. Triticum, wheat, ear-branching, supernumerary spikelets, vernalization, photoperiod, temperature  相似文献   

14.
REID  J. B. 《Annals of botany》1979,44(2):163-173
Late cultivars of peas behave as quantitative long day plants.The reason that they flower between nodes 20 and 35 under an8 h photoperiod is shown to be because the leaves and maturestem produce a more promotory ratio of the flowering hormonesas they age. Later formed leaves may also start with a slightlymore promotory ratio than the leaves produced at a lower node.The gene Sn controls the production of a flower inhibitor andit is suggested that the activity of this gene in a leaf isgradually reduced as the leaf ages. From grafting experiments,the site of action of the gene Hr is shown to be in the leavesor mature stem and not at the shoot apex. This supports a previoussuggestion that the gene Hr is a specific inhibitor of the ageingresponse of gene Sn. Gene Hr is shown to cause a substantial delay in the floweringnode of decotyledonized plants of genotype If e sn hr undershort day conditions, suggesting that Hr has little effect inthe cotyledons. It is argued that the gene sn is a leaky mutantand that gene Hr does not control a photoperiod response inits own right but has its effect through the Sn locus. From a comparison of intact plants and self-grafts of the lategenotype If e Sn hr it is shown that under the conditions usedphysiological age may be of more importance than chronologicalage in determining flowering in peas. Reasons for the smalleffect of defoliation treatments on flowering are discussedas well as possible reasons for the promotory effect of decotyledonizationon the flowering node of late lines. Pisum sativum L, flowering, ageing, genetic control  相似文献   

15.
Phenotypic manifestations of Vrn(vernalization) and Ppd (photoperiod) genes responsible for transition of bread wheat Triticum aestivumL. to generative growth (flowering) are mutually related. Since the mechanism of phytochrome-induced photoperiodism involves the enzymes of cyclic adenosine monophosphate metabolism, and phosphodiesterase in particular, we tested involvement of phosphodiesterase in the process of winter wheat vernalization and formation of flowering competence in alternate wheat requiring a long photoperiod but no vernalization for its transition to flowering. We studied temperature dependence of phosphodiesterase activity in vernalized and unvernalized winter wheat on the one hand and in etiolated and red light illuminated seedlings of alternate wheat on the other hand. Short-term experiments demonstrated that red light illumination is similar to long photoperiod by the effect on the long-day plants. Both influences induced a pronounced inversion of the temperature profile of phosphodiesterase activity in the 28–45°C range. We propose that phosphodiesterase is involved in vernalization and can serve as a receptor of low temperature in winter wheat. Changed temperature profile is a radical control mechanism of phosphodiesterase activity in response to the influences (red light and vernalizing temperatures) responsible for competence of various bread wheat forms for generative growth.  相似文献   

16.
This paper presents a plant phenological model based on genotypextemperaturexphotoperiodinteraction (GPTmodel). In the model, rate of development towardsa specified stage (e.g. flowering) for a given genotype is composedof three components: the genotype's maximum rate of development;any delay due to a non-optimal temperature; and any delay dueto a photoperiod response. It is assumed that development tothe specified stage is an autonomous process established bymost, if not all, genes other than the vernalization genes andthe photoperiod genes; and that this autonomous process is delayedby any activity of the photoperiod genes. Since all physiologicalprocesses are modulated by temperature, any photoperiod responseis inevitably a photoperiodxtemperature interaction. This interactionis simulated by assuming that the photoperiod gene activityoccurs only beyond a critical photoperiod (Pc) and is enlargedby temperature above a base temperature (Tbp) that allows thephotoperiod gene activity. The model is written asR=1/Db-St(T-Topt)2-Sp(T-Tbp)|P-Pc|, whereRis the expected rate of development to the specifiedstage under any combination of temperature (T) and photoperiod(P). The other model parameters are:Sp, the sensitivity to adelaying photoperiod;Topt, the optimum temperature for developmentin the absence of the photoperiod response;St, the sensitivityto a non-optimum temperature; andDb, the basic duration to thespecified stage (or intrinsic earliness), the inverse of whichis the maximum rate of development.Dbis observable only ifT=ToptandsimultaneouslyP  相似文献   

17.
Oat genotypes vary for photoperiod and vernalization responses. Vernalization often promotes earlier flowering in fall-sown but not spring-sown cultivars. Longer photoperiods also promote earlier flowering, and the response to longer photoperiods tends to be greater in cultivars from higher latitudes. To investigate the genetic basis of photoperiod and vernalization responses in oat, we mapped QTLs for flowering time under four combinations of photoperiod and vernalization treatments in the Ogle 2 TAM O-301 mapping population in growth chambers. We also mapped QTLs for flowering time in early spring and late-spring field plantings to determine the genetic basis of response to early spring planting in oat. Three major flowering-time QTLs (on linkage groups OT8, OT31 and OT32) were detected in most conditions. QTLs with smaller effects on flowering were less-consistently observed among treatments. Both vernalization-sensitive and insensitive QTLs were discovered. Longer photoperiod or vernalization alone tended to decrease the effects of flowering-time QTLs. Applied together, longer photoperiod and vernalization interacted synergistically, often on the same genomic regions. Earlier spring planting conferred an attenuated vernalization treatment on seeds. The major flowering-time QTLs mapped in this study matched those mapped previously in the Kanota 2 Ogle oat mapping population. Between these two studies, we found a concordance of flowering-time QTLs, segregation distortion, and complex genetic linkages. These effects may all be related to chromosomal rearrangements in hexaploid oat. Comparative mapping between oat and other grasses will facilitate molecular analysis of vernalization response in oat.  相似文献   

18.
19.
Temperature Response of Vernalization in Wheat: A Developmental Analysis   总被引:4,自引:2,他引:2  
BROOKING  IAN R. 《Annals of botany》1996,78(4):507-512
The vernalization response of wheat ( Triticum aestivum L.)was reinterpreted from a developmental perspective, using currentconcepts of the developmental regulation of wheat morphologyand phenology. At temperatures above 0 °C, the effects ofthe process of vernalization per se in wheat are confoundedby the effects of concurrent vegetative development. These effectsare manifested by differences in the number of leaves initiatedby the shoot apex prior to floral initiation, which in turnaffects the subsequent rate of development to ear emergenceand anthesis. Leaf primordia development during vernalizationand total leaf number at flowering were used to develop criteriato define both the progress and the point of saturation of thevernalization response. These criteria were then used to reinterpretthe results of Chujo ( Proceedings of the Crop Science Societyof Japan 35 : 177–186, 1966), and derive the temperatureresponse of vernalization per se for plants grown under saturatinglong day conditions. The rate of vernalization increased linearlywith temperature between 1 and 11 °C, such that the timetaken to saturate the vernalization response decreased from70 d at 1 °C to 40 d at 11 °C. The rate declined againat temperatures above 11 °C, and 18 °C was apparentlyineffective for vernalization. Total leaf number at saturation,however, increased consistently with temperature, as a resultof the balance between the concurrent processes of leaf primordiuminitiation and vernalization. Total leaf number at saturationincreased from 6 at 1 °C to 13.3 at 15 °C, which inturn influenced the time taken to reach ear emergence. The advantagesof using this developmental interpretation of vernalizationas the basis for a mechanistic model of the vernalization responsein wheat are discussed. Triticum aestivum L.; wheat; vernalization; rate; temperature; primordia; leaf number; flowering  相似文献   

20.
The Effect of Fruit Shading on Yield in Pisum sativum L.   总被引:2,自引:0,他引:2  
HOLE  C. C.; SCOTT  P. A. 《Annals of botany》1981,48(6):827-835
Fruits of Pisum sativum L. cv. Feltham First which initiatesonly one flower per flowering node, were selectively shadedunder varying levels of defoliation. The purpose of the experimentswas to ascertain whether the foliage could compensate for lossof the fruit's contribution to its own growth. There was evidenceof this, but fruit and seed weight per fruit and per plant werereduced by fruit shading at all levels of defoliation. The lossin yield due to shading suggested that the contribution fromthe fruit was at least 12 per cent. The number of seeds whichdeveloped to maturity was the yield component most affectedby treatment. There was no evidence to suggest that shadinghad a different quantitative effect on final weight at differentnodes, but it did increase flower abscission at the first foweringnode in an experiment done at low radiant exposure. In an experimentat higher radiant exposure, very few flowers abscised at theearlier nodes, but leaflet removal reduced final fruit yieldat the first flowering node to a greater degree than at thesecond. These differential responses could contribute to variabilityof seed size in a crop of vining peas. Pisum sativum, pea, fruit, pod, light, shading, photosynthesis, yield  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号