首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Tetrahymena, the DNA of the macronucleus exists as very large (100 to 4,000-kb) linear molecules that are randomly partitioned to the daughter cells during cell division. This genetic system leads directly to an assortment of alleles such that all loci become homozygous during vegetative growth. Apparently, there is a copy number control mechanism operative that adjusts the number of each macronuclear DNA molecule so that macronuclear DNA molecules (with their loci) are not lost and aneuploid death is a rare event. In comparing Southern analyses of the DNA from various species of Tetrahymena using histone H4 genes as a probe, we find different band intensities in many species. These differences in band intensities primarily reflect differences in the copy number of macronuclear DNA molecules. The variation in copy number of macronuclear DNA molecules in some species is greater than an order of magnitude. These observations are consistent with a developmental control mechanism that operates by increasing the macronuclear copy number of specific DNA molecules (and the genes located on these molecules) to provide the relatively high gene copy number required for highly expressed proteins. © 1992 Wiley-Liss, Inc.  相似文献   

2.
Summary We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element.  相似文献   

3.
Sequence characterization of Tetrahymena macronuclear DNA ends.   总被引:3,自引:3,他引:3       下载免费PDF全文
Tetrahymena is a ciliated protozoan which has two nuclei: a micronucleus, which maintains the genetic continuity of the cell, and the macronucleus which is derived from the micronucleus after sexual conjugation. A macronuclear DNA library was constructed to contain DNA ends. A probe containing C4A2 repeats which are known to be present at macronuclear DNA ends (1) was used to screen the library. Three clones were characterized by sequencing, restriction enzyme mapping and Bal 31 digestion. The data indicate that these three clones represent macronuclear DNA ends which were generated by DNA fragmentation during macronuclear formation. The sequencing data at the C4A2 repeat junction show a conserved sequence of five nucleotides, TTATT. Sequences further away show no obvious homologies except that they are highly enriched in AT. This structure is quite different from the subtelomeric sequences of other organisms.  相似文献   

4.
5.
Sheng  Yalan  Duan  Lili  Cheng  Ting  Qiao  Yu  Stover  Naomi A.  Gao  Shan 《中国科学:生命科学英文版》2020,63(10):1534-1542
The ciliate Tetrahymena thermophila has been a powerful model system for molecular and cellular biology. However, some investigations have been limited due to the incomplete closure and sequencing of the macronuclear genome assembly, which for many years has been stalled at 1,158 scaffolds, with large sections of unknown sequences(available in Tetrahymena Genome Database, TGD, http://ciliate.org/). Here we completed the first chromosome-level Tetrahymena macronuclear genome assembly, with approximately 300× long Single Molecule, Real-Time reads of the wild-type SB210 cells—the reference strain for the initial macronuclear genome sequencing project. All 181 chromosomes were capped with two telomeres and gaps were entirely closed. The completed genome shows significant improvements over the current assembly(TGD 2014) in both chromosome structure and sequence integrity. The majority of previously identified gene models shown in TGD were retained,with the addition of 36 new genes and 883 genes with modified gene models. The new genome and annotation were incorporated into TGD. This new genome allows for pursuit in some underexplored areas that were far more challenging previously; two of them, genome scrambling and chromosomal copy number, were investigated in this study. We expect that the completed macronuclear genome will facilitate many studies in Tetrahymena biology, as well as multiple lines of research in other eukaryotes.  相似文献   

6.
7.
Macronuclear DNA molecules of Tetrahymena thermophila.   总被引:5,自引:2,他引:5       下载免费PDF全文
The physical organization of the DNA in the macronuclei of Tetrahymena thermophila was investigated by using alternating-orthogonal-field gel electrophoresis. The genome consisted of a spectrum of molecules with lengths ranging from less than 100 to in excess of 1,500 kilobase pairs. There were about 270 different macronuclear DNA molecules, with an average size of about 800 kilobase pairs. Specific genes were mapped and were generally found on macronuclear DNA molecules of the same size in different strains of T. thermophila. This indicates that the molecular mechanisms giving rise to the macronuclear DNA molecules were precise. The fragmentation process that gave rise to macronuclear DNA molecules occurred between 11 and 19 h after the initiation of conjugation.  相似文献   

8.
An analysis was made of the size maturation process of nascent DNA intermediates in macronuclear DNA replication of Tetrahymena pyriformis. The first discrete size class of nascent intermediates larger than Okazaki fragments were replicon-sized DNA (about 2 X 10(7) D single-stranded (ss) DNA) and accumulated in cells treated with cycloheximide. On removal of cycloheximide, the replicon-sized intermediates were converted to middle-sized intermediates (about 10 X 10(7) D ssDNA) and then merged into chromosomal-sized DNA. As indicated by either aphidicolin inhibition or the technique of the photolysis of bromodeoxyuridine (BrdU)-substituted DNA with long-wave ultraviolet light, four to eight replicon-sized intermediates were joined together to form a middle-sized intermediate after rapid sealing by DNA synthesis of the late-replicating regions located between adjacent replicon-sized intermediates. The late-replicating regions may represent the short gaps or terminal regions where DNA synthesis was retarded by cycloheximide, since the size of late-replicating regions was suggested to be shorter than the replicon size by DNA fiber autoradiography. Therefore, it is probable that four to eight completed replicons are joined as a group such as a replicon cluster, as has been reported in DNA replication of other eukaryotic cells.  相似文献   

9.

Background  

Some diseases, like tumors, can be related to chromosomal aberrations, leading to changes of DNA copy number. The copy number of an aberrant genome can be represented as a piecewise constant function, since it can exhibit regions of deletions or gains. Instead, in a healthy cell the copy number is two because we inherit one copy of each chromosome from each our parents.  相似文献   

10.
Telomeres, the G-rich sequences found at the ends of eukaryotic chromosomes, ensure chromosome stability and prevent sequence loss from chromosome ends during DNA replication. During macronuclear development in Tetrahymena, the chromosomes fragment into pieces ranging from 20 kb to 1,500 kb. Tetrahymena telomerase, a ribonucleoprotein, adds telomeric (TTGGGG)n repeats onto telomeres and onto the newly generated macronuclear DNA ends. We have investigated whether telomerase RNA levels increase during macronuclear development, since such an increase might be expected during chromosomal fragmentation. The steady-state level of the telomerase RNA component was used to estimate the abundance of telomerase present in mating and nonmating Tetrahymena. Northern blot analysis revealed that in vegetatively growing Tetrahymena, there were 18,000-40,000 copies of telomerase RNA per cell. In mating cultures, the levels of RNA increased 2- to 5-fold at 9-15 h, and 1.5- to 3.5-fold in starved nonmating cultures. This increase in telomerase RNA paralleled telomerase activity, which also increased slightly in mating and starved nonmating cells.  相似文献   

11.
The presence of ubiquitin in ciliates was first demonstrated in Tetrahymena pyriformis. One clone--pTU2--presents two incomplete open reading frames and the putative polyubiquitin genes have been shown to be highly similar to those of other organisms. To further analyze the organization of this multigene family, several fragments of macronuclear DNA were cloned. We report here the isolation and characterization of one genomic clone (pTU20) that encodes a polyubiquitin gene (TU20) with five tandem repeats and presenting only one extra triplet CAA (Gln) upstream from the TGA. The promoter region of TU20 also presents a consensus heat shock element. The specific detection of RNA species with a synthetic oligonucleotide probe reveals that it corresponds to the 1.8 kb mRNA species whose expression is increased by temperature stress.  相似文献   

12.
A method for the amplification of a single DNA strand at low copy number is described. It is a wholly PCR based approach which involves an initial linear amplification of the target using a tagged strand specific primer. This is followed by classical PCR amplification of the progeny using a pair of primers, one specific for the sequence tagged onto the 5' end of the first round primer, the second specific for the target sequence. Given the protocol used the ratio of the two strands in the final amplification product was 50:1.  相似文献   

13.
Following the sexual phase of its life cycle, the hypotrichous ciliate Oxytricha nova transforms a copy of its chromosomal micronucleus into a macronucleus containing short, linear DNA molecules with an average size of 2.2 kilobase pairs. In addition, more than 90% of the DNA sequences in the micronuclear genome are eliminated during this process. We have examined the organization of macronuclear DNA molecules in the micronuclear chromosomes. Macronuclear DNA molecules were found to be clustered and separated by less than 550 base pairs in two cloned segments of micronuclear DNA. Recombinant clones of two macronuclear DNA molecules that are adjacent in the micronucleus were also isolated and examined by DNA sequencing. The two macronuclear DNA molecules were found to be separated by only 90 base pairs in the micronuclear genome.  相似文献   

14.
Using the method of orthogonal-field-alternation gel electrophoresis, we have resolved the macronuclear DNA of Tetrahymena thermophila into a series of distinct bands. Using electrode switching intervals ranging from 10 to 70 seconds we have resolved DNA bands ranging in size from about 21 kb up to and beyond the size of yeast chromosomes VII and XV. Hybridization of Southern blots from these gels to both unique and repetitive DNA sequences shows that the macronuclear genome of T. thermophila has a precise organization. The unique sequences tested each hybridize to only one band of macronuclear DNA and the hybridization patterns seem to be identical in several inbred strains examined.  相似文献   

15.

Background

Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles.

Results

Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167).

Conclusion

Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/gb-2014-15-8-r70) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
K K Kidwell  T C Osborn 《Génome》1993,36(5):906-912
Repeated DNA sequences of alfalfa (Medicago sativa L.) somaclonal variants were analyzed to determine if changes in copy number had occurred during tissue culture. DNA clones containing highly repeated nuclear sequences from the diploid line HG2 (2x = 16) were slot blotted and probed with labeled DNAs from HG2 and several somaclones of HG2. Two DNA clones that differed visually in hybridization intensity among the plant DNAs and one clone that had constant hybridization intensity were selected and used as probes on Southern blots and slot blots containing equal quantities of DNAs from HG2 and 15 régénérants. Statistically significant differences were detected in the copy number of two anonymous DNA sequences initially selected as variable and in the copy number of sequences homologous to pea ribosomal DNA. Based on Southern blot analysis, these sequences appeared to be arranged as tandem repeats. The cloned sequence initially selected as stable did not vary significantly in copy number and it appeared to be arranged as a dispersed repeat. Both increases and decreases in copy number of repeated sequences were observed in plants from successive regeneration cycles. Results from this study indicate that specific repeated nuclear DNA sequences have changed copy number in plants regenerated from tissue culture.  相似文献   

19.
20.
Extensive programmed DNA rearrangements occur during the development of the somatic macronucleus from the germ line micronucleus in the sexual cycle of the ciliated protozoan Tetrahymena thermophila. Using an in vivo processing assay, we analyzed the role of micronucleus-limited DNA during the programmed deletion of mse2.9, an internal eliminated sequence (IES). We identified a 200-bp region within mse2.9 that contains an important cis-acting element which is required for the targeting of efficient programmed deletion. Our results, obtained with a series of mse2.9-based chimeric IESs, led us to suggest that the cis-acting elements in both micronucleus-limited and macronucleus-retained flanking DNAs stimulate programmed deletion to different degrees depending on the particular eliminated sequence. The mse2.9 IES is situated within the second intron of the micronuclear locus of the ARP1 gene. We show that the expression of ARP1 is not essential for the growth of Tetrahymena. Our results also suggest that mse2.9 is not subject to epigenetic regulation of DNA deletion, placing possible constraints on the scan RNA model of IES excision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号