首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Apparent specific binding of [3H]imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding ( KD < 2 μ M ) of imipramine to human platelet membranes was demonstrated and its significance discussed.  相似文献   

2.
The DnaA protein specifically binds to the origin of chromosomal DNA replication and initiates DNA synthesis. In addition to this sequence-specific DNA binding, DnaA protein binds to DNA in a sequence-independent manner. We here compared the two DNA binding activities. Binding of ATP and ADP to DnaA inhibited the sequence-independent DNA binding, but not sequence-specific binding. Sequence-independent DNA binding, but not sequence-specific binding, required incubation at high temperatures. Mutations in the C-terminal domain affected the sequence-independent DNA binding activity less drastically than they did the sequence-specific binding. On the other hand, the mutant DnaA433, which has mutations in a membrane-binding domain (K327 to I344) was inert for sequence-independent binding, but could bind specifically to DNA. These results suggest that the two DNA binding activities involve different domains and perform different functions from each other in Escherichia coli cells.  相似文献   

3.
4.
In the present study we have investigated the macromolecular nature of porcine oxyntic mucosal PGE2 binding sites and the involvement of specific functional groups in the binding interaction. Incubation of oxyntic mucosal membranes with DNAse or RNAse did not influence binding. Phospholipase A2 was strongly inhibitory while phospholipases C and D exerted variable effects. Trypsinization of the membranes also reduced binding and this reduction was prevented by addition of soybean trypsin inhibitor. Neuraminidase and beta-galactosidase treatments resulted in variable increases in binding activity. The increase in binding was due to an increase in binding affinity and/or binding site concentration. Protein modifying reagents acetic anhydride, N-ethylmaleimide and mercaptoethanol all reduced binding. These results suggest the importance of protein, lipid and carbohydrate components of the membrane in the binding interaction between PGE2 and its binding site. The ability of mercaptoethanol and N-ethylmaleimide to reduce binding suggest the involvement of both sulphydryl and disulphide groups in the PGE2 binding reaction.  相似文献   

5.
The binding of Pb2+ to bovine serum albumin (BSA) at neutral pH was studied using lead ion selective electrode. The binding data was treated according to Scatchard Equation. The number of binding classes and the number of binding sites, intrinsic dissociation constants and stepwise binding constants for each class were determined. Two binding classes were found. Four binding sites in the first class and five binding sites in the second class were determined. Binding in the first class was stronger than in the second. Similar binding studies were carried out with heat treated BSA. It was found that not only the number of binding sites but also the strength of binding increases upon heat treatment.  相似文献   

6.
The laminar distribution of binding to a number of postsynaptic neurotransmitter receptors was assessed autoradiographically in postmortem samples of area 23a in posterior cingulate cortex from 13 Alzheimer and nine age-matched control cases. Specific binding in all Alzheimer cases was compared to that in control cases, and the following alterations were observed: reduced muscimol binding in most layers; no changes in pirenzepine binding; and elevated cyanopindolol binding in layers Ic, IIIc, and IV. The Alzheimer cases were classified further on the basis of neuronal degeneration: class 1, no neuron loss; class 2, greatest losses in layer II or III; class 3, greatest losses in layer IV; and class 4, greatest losses in layer V or VI. This classification uncovered further alterations in ligand binding patterns. First, muscimol binding was reduced in layers II and III only in class 2 cases and in layers V and VI only in class 4 cases. Second, pirenzepine binding was reduced in layers Ic, IIIa-b, and VI of class 1 cases and layers Va and VI of class 4 cases. In spite of neuron degeneration in classes 2 and 3, there was no change in pirenzepine binding in these classes. Third, elevated cyanopindolol binding occurred in classes 3 and 4, whereas classes 1 and 2 had normal levels of binding. These results suggest that cases of Alzheimer's disease express heterogeneities in neocortical pathology which are reflected in the laminar patterns of binding to postsynaptic receptors. Reductions in muscimol binding to the gamma-aminobutyric acidA receptor had the closest relationship with neuron degeneration, whereas pirenzepine binding appeared to reflect a compensation in muscarinic receptors for changes in neuron densities.  相似文献   

7.
At the site of vascular injury, von Willebrand factor (VWF) mediates platelet adhesion to subendothelial connective tissue through binding to the N-terminal domain of the alpha chain of platelet glycoprotein Ib (GPIbalpha). To elucidate the molecular mechanisms of the binding, we have employed charged-to-alanine scanning mutagenesis of the soluble fragment containing the N-terminal 287 amino acids of GPIbalpha. Sixty-two charged amino acids were changed singly or in small clusters, and 38 mutant constructs were expressed in the supernatant of 293T cells. Each mutant was assayed for binding to several monoclonal antibodies for human GPIbalpha and for ristocetin-induced and botrocetin-induced binding of 125I-labeled human VWF. Mutations at Glu128, Glu172, and Asp175 specifically decreased both ristocetin- and botrocetin-induced VWF binding, suggesting that these sites are important for VWF binding of platelet GPIb. Monoclonal antibody 6D1 inhibited ristocetin- and botrocetin-induced VWF binding, and a mutation at Glu125 specifically reduced the binding to 6D1. In contrast, antibody HPL7 had no effect for VWF binding, and mutant E121A reduced the HPL7 binding. Mutations at His12 and Glu14 decreased the ristocetin-induced VWF binding with normal botrocetin-induced binding. Crystallographic modeling of the VWF-GPIbalpha complex indicated that Glu128 and Asp175 form VWF binding sites; the binding of 6D1 to Glu125 interrupts the VWF binding of Glu128, but HPL7 binding to Glu121 has no effect on VWF binding. Moreover, His12 and Glu14 contact with Glu613 and Arg571 of VWF A1 domain, whose mutations had shown similar phenotype. These findings indicated the novel binding sites required for VWF binding of human GPIbalpha.  相似文献   

8.
The reversible binding of valproate to human serum albumin determines a decrease of the binding of ligands that selectively bind to site I, site II, and bilirubin binding site. The binding inhibition was followed by displacement chromatography methodology using increasing concentrations of the competitor, i.e. valproate, in the mobile phase. Significant binding inhibition was observed for drugs binding at site I and site II. The greater displacement was observed for the more retained enantiomer of benzodiazepines and profens. A reduction of the affinity was observed also in the case of phenol red, this compound being selected as representative of bilirubin binding site. Difference circular dichroism spectroscopy was also used to characterise the binding of valproate to human serum albumin. This antiepilectic drug was proved to affect the binding at site I, II, and bilirubin binding site. The data have physiological relevance because significant inhibition of the binding resulted at clinic concentrations of valproate.  相似文献   

9.
Specific binding sites for human gastrin I (gastrin) were identified in a crude membrane preparation from the gastric carcinoid tumor of Mastomys (Praomys) natalensis. The binding of 125I-gastrin to the carcinoid tumor membrane was saturable, and Scatchard analysis of the data revealed a single class of binding site with a dissociation constant of 139.2 pM and a maximal binding capacity of 23.5 fmol/mg protein. Gastrin and CCK8 equipotently and dose-dependently displaced the binding of 125I-gastrin to the membrane. GTP but not ATP decreased 125I-gastrin binding to the membrane, and removal of Mg2+ attenuated this inhibitory action of GTP. The GTP-induced reduction of 125I-gastrin binding was found to be due to a decrease in binding affinity without a change in binding capacity. These results clearly indicate the presence of specific binding sites for gastrin, probably coupled to guanine nucleotide-binding protein, in the carcinoid tumor membrane of Mastomys, and suggest that gastrin has possible biological actions on these tumors.  相似文献   

10.
The binding of methadone to maternal and fetal plasma proteins was determined throughout the third trimester in the pregnant ewe. Blood was sampled from chronic indwelling catheters placed in the maternal aorta and fetal aorta. Methadone binding was determined by use of equilibrium dialysis with (3H)-methadone. Maternal binding ranged from 50.4 to 89.5%, with a mean of 76.2 ±1.3 (SE)%. Fetal binding was initially significantly lower than maternal binding, but increased rapidly in the last two weeks before parturition. Prior to 130 days gestation, the ratio of fetal binding to maternal binding was 0.40 ± 0.03. This binding ratio increased to 0.82 ± 0.08 in the last few days of pregnancy. Preliminary results suggested that maternal binding was higher in the early post-partum period. These results demonstrate that the relationship between maternal and fetal plasma binding of methadone changes rapidly towards the end of pregnancy, and fetal binding approaches maternal binding at parturition.  相似文献   

11.
The double-stranded RNA activated protein kinase DAI contains an RNA binding domain consisting of two copies of a double-stranded RNA binding motif. We have investigated the role of RNA structure in the interaction between DAI and the structured single-stranded RNA, adenovirus VA RNAI, which inhibits DAI activation. Mutations in the apical stem, terminal stem, and central domain of the RNA were tested to assess the contribution of these elements to DAI binding in vitro. The data demonstrate that over half a turn of intact apical stem is required for the interaction and that there is a correlation between the binding of apical stem mutants and their ability to function both in vivo and in vitro. There was also evidence of preference for GC-rich sequence in the proximal region of the apical stem. In the central domain the correlation between binding and function of mutant RNAs was poor, suggesting that at least some of this region plays no direct role in binding to DAI, despite its functional importance. Exceptionally, central domain mutations that encroached on the phylogenetically conserved stem 4 of VA RNA disrupted binding, and complementary mutations in this sequence partially restored binding. Measurement of the binding of wild-type VA RNAI to DAI and p20, a truncated form of the protein containing the RNA binding domains alone, under various ionic conditions imply that the major interactions are electrostatic and occur via the protein's RNA binding domain. However, differences between full-length DAI and p20 in their binding to mutants in the conserved stem suggest that regions outside the RNA binding domain also participate in the binding. The additional interactions are likely to be non-ionic, and may be important for preventing DAI activation during virus infection.  相似文献   

12.
Abstract— [3H]Spiperone binding has been used to study neurotransmitter receptors in bovine caudate nucleus in displacement and saturation binding experiments. Displacement curves for several antagonists are biphasic and can be analysed into contributions from dopaminergic and serotonergic sites. Antagonist binding at each class of sites follows the simple mass action equations for binding at a homogeneous set of sites (slope factors close to unity). Agonist displacement curves also indicate complex behaviour, but agonist binding to the dopaminergic sites alone exhibits heterogeneous properties (slope factors less than unity). Saturation binding experiments have been conducted on each class of site, defining dopaminergic binding of [3H]spiperone as that binding displaced by 0.1 m m -dopamine and serotonergic binding as that displaced by 0.3 μ m -mianserin. In each case, a single class of binding sites was detected: the binding parameters derived in this way have been used to calculate the proportions of the two classes of binding site observed in displacement experiments. Good agreement was obtained between calculated and observed values.  相似文献   

13.
To observe the binding of plasmid DNA to non-nuclear DNA binding proteins in sar-coplasmic reticulum (SR) and the effects of this binding on SR function, sarcoplasmic reticulum proteins in rat skeletal muscle were isolated by differential centrifuge and sucrose density-gradient centrifuge. The results showed that there are two sequence-independent DNA binding proteins in SR proteins, the molecular weights of which are 83 and 58 ku, respectively. Ca2 uptake and release of SR were remarkably promoted by the binding of plasmid DNA to DNA binding proteins in SR, the mechanism is probably through increasing of Ca2 -ATPase activity in SR and changing of character of Ca2 release channel ryanodine receptors induced by the binding. These results suggest that there exist DNA binding proteins in SR and its binding to DNA may affect Ca2 transport of SR.  相似文献   

14.
Strong agonists cause platelets to expose a procoagulant surface supporting the assembly of two important coagulation enzyme complexes. Equilibrium binding has determined the density of high affinity saturable factor IXa binding sites to be 500-600 sites/platelet. We have now used flow cytometry to visualize the binding of factor IX and IXa to thrombin- or SFLLRN-activated platelets. Concentrations of these agonists that are half-maximal or maximal in kinetic studies resulted in only a small subpopulation (4-20%) of platelets binding factor IX or IXa with the density of binding sites for factor IX being about half of that for factor IXa, consistent with previous equilibrium binding studies. A small subpopulation (5 +/- 1.5%) of platelets stimulated with either agonist also exposed annexin V binding sites, and this subpopulation of platelets also bound factor IXa. Annexin V decreased factor IXa binding in the presence or absence of factor VIIIa, and factor IXa could also decrease annexin V binding on some platelets indicating a common binding site in agreement with previous studies. All platelets binding factor IXa were positive for glycoprotein IX, at the same glycoprotein IX surface density as seen in platelets negative for factor IXa binding. These studies refine the results from equilibrium binding studies and suggest that, on average, only a small subpopulation (approximately 10%) of PAR 1-stimulated platelets expose approximately 6000 factor IXa binding sites/platelet.  相似文献   

15.
A chiral stationary phase for high-performance liquid chromatography, based upon immobilized human serum albumin (HSA), was used to investigate the effect of octanoic acid on the simultaneous binding of a series of drugs to albumin. Octanoic acid was found to bind with high affinity to a primary binding site, which in turn induced an allosteric change in the region of drug binding Site II, resulting in the displacement of compounds binding there. Approximately 80% of the binding of suprofen and ketoprofen to HSA was accounted for by binding at Site II. Octanoic acid was found to also bind to a secondary site on HSA, with much lower affinity. This secondary site appeared to be the warfarin—azapropazone binding area (drug binding Site I), as both warfarin and phenylbutazone were displaced in a competitive manner by high levels of octanoic acid. The enantioselective binding to HSA exhibited by warfarin, suprofen and ketoprofen was found to be due to differential binding of the enantiomers at Site I; the primary binding site for suprofen and ketoprofen was not enantioselective.  相似文献   

16.
Paromomycin binds specifically to a single type of binding site on the 70-S streptomycin-sensitive Escherichia coli ribosome. This site is different from that of dihydrostreptomycin since paromomycin binds to streptomycin-resistant ribosomes and sine dihydrostreptomycin does not compete for paromomycin binding. Paromomycin binding, unlike dihydrostreptomycin binding, is independent of changes in ribosome concentration but influenced by magnesium ion concentration. Moreover, paromomycin does not bind to the 30-S subunit of the streptomycin-sensitive ribosome, except in the presence of dihydrostreptomycin, which probably induces the conformational changes necessary for a paromomycin binding site. This induction does not occur with streptomycin-resistant ribosomes. Neither antibiotic binds to the 50-S subunit. In general, binding of the one antibiotic increases the number of sites available for binding of the other. Both antibiotics exhibit marked non-specific binding at high antibiotic/ribosome ratios. Competition studies have enabled the classification of other aminoglycosides according to their ability to compete for the paromomycin and dihydrostreptomycin binding sites. Derivatives structurally related to paromomycin compete for its binding, the degree of competition being related to antibacterial activity, but do not compete for dihydrostreptomycin binding; they, on the contrary, increase the number of dihydrostreptomycin binding sites. Neither gentamicin nor kanamycin derivatives, which induce a high level of misreading, nor kasugamycin and spectinomycin, which do not induce misreading, compete for paromomycin or dihydrostreptomycin binding sites. Other sites may be involved in the binding of these aminoglycosides and in inducing misreading.  相似文献   

17.
Gentilcore  LR; Derby  CD 《Chemical senses》1998,23(3):269-281
Our study was designed to examine how components of complex mixtures can inhibit the binding of other components to receptor sites in the olfactory system of the spiny lobster Panulirus argus. Biochemical binding assays were used to study how two- to six-component mixtures inhibit binding of the radiolabeled odorants taurine, L-glutamate and adenosine-5'-monophosphate to a tissue fraction rich in dendritic membrane of olfactory receptor neurons. Our results indicate that binding inhibition by mixtures can be large and is dependent on the nature of the odorant ligand and on the concentration and composition of the mixture. The binding inhibition by mixtures of structurally related components was generally predicted using a competitive binding model and binding inhibition data for the individual components. This was not the case for binding inhibition by most mixtures of structurally unrelated odorants. The binding inhibition for these mixtures was generally smaller than that for one or more of their components, indicating that complex binding interactions between components can reduce their ability to inhibit binding. The magnitude of binding inhibition was influenced more by the mixture's precise composition than by the number of components in it, since mixtures with few components were sometimes more inhibitory than mixtures with more components. These findings raise the possibility that complex binding interactions between components of a mixture and their receptors may shape the output of olfactory receptor neurons to complex mixtures.   相似文献   

18.
Membrane preparations from endometria of rats in different physiological states (e.g. pseudopregnancy, ovariectomized animals receiving progesterone + oestradiol or oestradiol alone) were studied for [3H]PGF-2 alpha binding by methods which detected PGF-2 alpha binding in ovary preparations and PGE binding in the same endometrial preparations. There was no evidence of high-affinity binding sites for [3H]PGF-2 alpha. Saturable [3H]PGF-2 alpha binding that increased with the onset of uterine sensitivity was detected but this binding does not fulfil all the criteria required for a PGF-2 alpha receptor and is probably due to binding to PG metabolizing enzymes in our preparations, or to binding of [3H]PGF-2 alpha to PGE binding sites. The failure to detect specific PGF-2 alpha binding sites seems to reflect a true absence of these sites in the rat endometrium.  相似文献   

19.
In this study, lysophosphatidylcholine (lysoPC) was shown to bind to a fatty acid binding protein isolated from rat liver. To demonstrate the binding, lysoPC was incorporated into multilamellar liposomes and incubated with protein. For comparison, binding of both lysoPC and fatty acid to liver fatty acid binding protein, albumin, and heart fatty acid binding protein were measured. At conditions where palmitic acid bound to liver fatty acid binding protein and albumin at ligand to protein molar ratios of 2:1 and 5:1, respectively, lysoPC binding occurred at molar ratios of 0.4:1 and 1:1. LysoPC did not bind to heart fatty acid binding protein under conditions where fatty acid bound at a molar ratio of 2:1. Competition experiments between lysoPC and fatty acid to liver fatty acid binding protein indicated separate binding sites for each ligand. An equilibrium dialysis cell was used to demonstrate that liver fatty acid binding protein was capable of transporting lysoPC from liposomes to rat liver microsomes, thereby facilitating its metabolism. These studies suggest that liver fatty acid binding protein may be involved in the intracellular metabolism of lysoPC as well as fatty acids, and that functional differences may exist between rat liver and heart fatty acid binding protein.  相似文献   

20.
Fractions and subcellular structures were prepared from rat brain homogenate and their purity was assessed using enzyme markers, gamma-aminobutyric acid binding, DNA content, and electron microscopy. Insulin binding was highest on the plasma membrane preparations and approximately 50% less so on brain homogenate crude mitochondrial (P2), myelinated axon, and synaptosome preparations. Very low levels of binding were found on mitochondria and nuclei. Differences in binding between fractions were due to numbers of binding sites, and not variable binding affinity. There was a close relationship between insulin binding and the activity of Na/K ATPase (E.C. 3.6.1.4) in all fractions (r = 0.98). Insulin binding to the P2 was compared with plasma membrane fractions in seven brain regions, and the results demonstrated the same close relationship between insulin binding and plasma membrane content in all regions except hypothalamus. Plasma membrane insulin binding was well represented by the binding on P2 membranes in all regions except hypothalamus and brainstem. It was concluded that insulin binding is distributed evenly over the surface of brain cells and is not increased on nerve endings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号