首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structures of N-linked sugar chains of glycoproteins expressed in tobacco BY2 cultured cells are reported. Five pyridylaminated (PA-) N-linked sugar chains were derived and purified from hydrazinolysates of the glycoproteins by reversed-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were identified by two-dimensional PA-sugar chain mapping, ion-spray MS/MS analysis, and exoglycosidase digestions. The five structures fell into two categories; the major class (92.5% as molar ratio) was a xylose containing-type (Man3Fuc1 Xyl1GlcNAc2 (41.0%), GlcNAc2Man3Fuc1Xyl1GlcNAc2 (26.5%), GlcNAc1Man3Fuc1Xyl1GlcNAc2 (21.7%), Man3 Xyl1GlcNAc2 (3.3%)), and the minor class was a high-mannose type (Man5GlcNAc2 (7.5%)). This is the first report to show that alpha(1-->3) fucosylation of N-glycans does occur but beta(1-->4) galactosylation of the sugar chains does not in the tobacco cultured cells.  相似文献   

2.
A phospholipid exchange protein (PLEP) functioning between theendoplasmic reticulum and the mitochondrion was purified fromthe cytosolic fraction of germinated castor bean endosperms.In the protein fraction eluted from Sephadex G-100 column, theexchange rate reached 7.3µg phospholipids exchanged/mgprotein/15 min, which was 60-fold that of pota to tuber PLEP.The lipid transfer by this protein was specific for phosphatidylcholine and the transfer rate from microsomes to mitochondriawas as high as that from mitochondria to microsomes. Castorbean PLEP transferred phospholipid from castor bean microsomesto mitochondria from other sources such as potato tubers, cauliflowerinflorescences, pumpkin hypocotyls and rat livers, and to liposomes,but not to Avena etioplasts. In addition, it transferred phospholipidfrom potato microsomes to potato mitochondria. (Received November 17, 1978; )  相似文献   

3.
The pollen of Ginkgo biloba is one of the allergens that cause pollen allergy symptoms. The plant complex type N-glycans bearing beta1-2 xylose and/or alpha1-3 fucose residue(s) linked to glycoallergens have been considered to be critical epitopes in various immune reactions. In this report, the structures of N-glycans of total glycoproteins prepared from Ginkgo biloba pollens were analyzed to confirm whether such plant complex type N-glycans occur in the pollen glycoproteins. The glycoproteins were extracted by SDS-Tris buffer. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine and the resulting pyridylaminated (PA-)N-glycans were purified by a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, IS-MS, and MS/MS. The plant complex type structures (GlcNAc2Man3Xyl1Fuc1GlcNAc2 (31%), GlcNAc2Man3Xyl1GlcNAc2 (5%), Man3Xyl1Fuc1GlcNAc2 (13%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (8%), and GlcNAc1Man3Xyl1GlcNAc2 (17%)) have been found among the N-glycans of the glycoproteins of Ginkgo biloba pollen, which might be candidates for the epitopes involved in Ginkgo pollen allergy. The remaining 26% of the total pollen N-glycans have the typical high-mannose type structures: Man8GlcNAc2 (11%) and Man6GlcNAc2 (15%).  相似文献   

4.
Manuel Mancha  Sten Stymne 《Planta》1997,203(1):51-57
Microsomal preparations from developing castor bean (Ricinus communis L.) endosperm catalyzed remodelling of in-situ-formed triacylglycerol (TAG) species. Castor bean microsomal membranes synthesized [14C]TAGs from either glycerol 3-phosphate and [14C]ricinoleoyl-CoA or [14C]glycerol 3-phosphate and ricinoleoyl-CoA. Upon repelleting and subsequent incubation of the microsomes a redistribution occurred of both the [14C]glycerol and [14C]ricinoleoyl moieties of the in-situ-synthesized [14C]TAGs. Radioactivity was transferred from TAG species with three (3HO-TAG) or two (2HO-TAG)ricinoleoyl groups into species with two or one (HO-TAG) ricinoleoyl groups. Mass analysis of the lipid and fatty acid movements in the membranes showed that a net synthesis of TAGs with no, one and two ricinoleoyl groups occurred at the expense of 3HO-TAG and polar lipids. Thus, the non-hydroxylated acyl groups from polar lipids were used in the remodelling of TAGs. In-vivo feeding of [14C]ricinoleic acid to slices of castor bean endosperm demonstrated the presence of two radioactive pools of TAGs one in the oil bodies, which was rich in [14C]3HO-TAG, and one associated with the microsomal membranes, which was dominated by radioactive 1HO-TAG and 2HO-TAG. The microsomal TAG pool was remodelled in vivo in a similar way as in the in-vitro experiments with microsomal membranes. Received: 8 November 1996 / Accepted: 5 February 1997  相似文献   

5.
[3H]Mannose-labelled glycopeptides in the slices of livers from neonatal and 1-, 2-, 3- and 5-week-old rats were characterized by column chromatographies on Sephadex G-50 and concanavalin A-Sepharose and by endo-beta-N-acetylglucosaminidase H digestion. The proportion of complex-type glycopeptides was increased with time until 2 weeks post partum and then returned to the neonatal level. This was mainly due to the increased proportion of concanavalin A-bound (biantennary) species. These changes were accompanied by consistent changes in the activities of processing enzymes in liver microsomal fraction, especially of N-acetylglucosaminyltransferase I. Complex-type glycopeptides from neonatal and 2- and 5-week-old rat livers were further characterized by column chromatographies on Bio-Gel P-6 and DE 52 DEAE-cellulose in combination with neuraminidase digestion. No significant difference was found between concanavalin A-bound species from neonatal liver and those from liver 5 weeks post partum, most of which were sialylated. Concanavalin A-bound species 2 weeks post partum were comparatively smaller in size and less sialylated. On the other hand, there was no significant difference among concanavalin A-unbound species from the three different sources, most of which were sialylated. Since glycoproteins from regenerating rat liver also contain a higher proportion of complex-type oligosaccharides, as previously reported, such changes in N-linked oligosaccharides of glycoproteins may be related to control of the growth of liver cells.  相似文献   

6.
Protocols have been developed for the characterization of carbohydrate covalently attached (N-linked) to an asparagine residue in glycoproteins, after separation by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Mixtures of proteins (each at a level from 0.5 to 50 microg) were resolved in the first dimension according to their isoelectric points (pI), followed by separation in the orthogonal axis on the basis of their molecular weights. Glycans were released directly from excised gel spots after digestion with PNGase F, with or without prior treatment with trypsin. In a third method, glycoproteins were electroblotted onto poly(vinylidene difluoride) before glycans were released by PNGase F. For all these procedures profiles of the neutral and sialic acid-containing oligosaccharide mixtures were obtained after derivatization with 3-acetamido-6-aminoacridine, and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and/or high-performance liquid chromatography. Potential applications to proteomics are discussed.  相似文献   

7.
Porcine pancreatic alpha-amylase was shown by interaction analyses using a resonance mirror detector and alpha-amylase-immobilized Sepharose to bind with glycoproteins possessing N-glycans but not O-linked mucin-type glycans. Direct binding of three types of N-glycans to the alpha-amylase was demonstrated by surface plasmon resonance. Binding with biotin-polymer sugar probes revealed that the alpha-amylase has affinity to alpha-mannose, alpha-N-acetylneuraminic acid, and beta-N-acetyllactosamine, which are components of N-glycans. The binding of glycoproteins or carbohydrates enhanced the enzyme activity, indicating that the recognition site for N-glycans is different from its catalytic site. The binding activity was unique to porcine pancreatic alpha-amylase and was not observed for alpha-amylase from saliva, wheat, and fungus.  相似文献   

8.
Leucoplast pyruvate kinase from endosperm of developing castor oil seeds (Ricinus communis L.; cv Baker) has been purified 1370-fold to a specific activity of 41.1 micromoles pyruvate produced per minute per milligram protein. Nondenaturing polyacrylamide gel electrophoresis of the purified enzyme resulted in a single protein staining band that co-migrated with pyruvate kinase activity. However, following sodium dodecyl sulfate polyacrylamide electrophoresis, two major protein staining bands of 57.5 and 44 kilodaltons, which occurred in an approximate 2:1 ratio, respectively, were observed. The native molecular mass was approximately 305 kilodaltons. Rabbit antiserum raised against the final enzyme preparation effectively immunoprecipitated leucoplast pyruvate kinase. The 57.5- and 44-kilodalton polypeptides are immunologically related as both proteins cross-reacted strongly on Western blots probed with the rabbit anti-(developing castor seed endosperm leucoplast pyruvate kinase) immunoglobulin that had been affinity-purified against the 57.5-kilodalton polypeptide. In contrast, pyruvate kinases from the following sources showed no immunological cross-reactivity with the same immunoglobulin: the cytosolic enzyme from developing or germinating castor bean endosperm; chloroplastic pyruvate kinase from expanding leaves of the castor oil plant; chloroplastic or cytosolic pyruvate kinase from the green alga, Selenastrum minutum; and mammalian or bacterial pyruvate kinases.  相似文献   

9.
As characterization of glycosylation is required for the licensing of recombinant glycoprotein therapeutics, technique comparability must be assessed. Eleven UK laboratories (seven industrial, two regulatory or government, two academic) participated in an inter-laboratory study to analyze N-glycans present in four mixtures prepared by PNGase F cleavage of commercial glycoproteins: human alpha1-acid glycoprotein (H alpha1), bovine alpha1-acid glycoprotein (B alpha1), bovine pancreatic ribonuclease B (RNaseB), and human serum immunoglobulin G (hIgG). Participants applied their routine glycan mapping methodology using predominantly chromatography and mass spectrometry to identify and quantify components. Data interpretation focused on the relative amounts of different glycan structures present, the degree of sialylation, antennary and the galactosylation profiles, fucosylation and bisecting GlcNAc content, and the number of glycan components identified. All laboratories found high levels of sialylation for H alpha1 and B alpha1 (Z-numbers 271 +/- 24 and 224 +/- 18, respectively), but varying ratios of di-, tri-, and tetra-antennary chains. The Z-score for hIgG glycans had high variability as values obtained from mass spectrometric and chromatographic methods clustered separately. The proportion of the major penta-mannosyl chain from RNaseB was between 29 and 62%. Proportions of fucosylated and bisected GlcNAc chains from hIgG were between 58 and 96% and 9 and 23%, respectively. Mass spectrometric approaches consistently identified more glycan species, especially when both N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) were present. These data highlight the need for well-characterized reference standards to support method validation and regulatory guidance on selection of approaches. Pharmacopoeial specifications must acknowledge method variability.  相似文献   

10.
[3H]Mannose-labeled glycopeptides in the slices after partial hepatectomy were characterized by column chromatography using Sephadex G-50, DE-52 and Con A-Sepharose, and further by digestion with alpha-mannosidase and endo-beta-N-acetylglucosaminidase H. They contained both 'complex type' and 'high-mannose type' oligosaccharides. A higher proportion of 'complex type' oligosaccharides was contained in regenerating liver 24 h after partial hepatectomy than in control. This tendency was increased gradually with time and was most pronounced at 144 h. In our previous studies, the activities of microsomal N-acetylglucosaminyltransferase towards endogenous and exogenous acceptors at 144 h after partial hepatectomy were shown to exceed most prominently that in control. No differences in the oligosaccharides were observed at 240 h when the deficit of liver had been restored. The oligosaccharides of glycopeptides in the incubation media were mostly 'complex type' and the differences between regenerating liver and control were observed only at 144 h. These results suggest that oligosaccharide processing of glycoproteins is regulated at the transfer step of peripheral N-acetylglucosamine to core oligosaccharides 144 h after partial hepatectomy, and that these alterations in oligosaccharides of glycoproteins may be related to hypertrophy and hyperplasia of hepatic cells in liver regeneration.  相似文献   

11.
12.
R. B. Mellor  J. M. Lord 《Planta》1979,146(1):91-99
A crude organelle preparation from germinating castor bean endosperm catalysed the incorporation of mannose from GDP[14C]mannose into acid-labile mannolipids. Solubility and chromatographic properties have identified the most rapidly synthesized products as mannosyl-phosphoryl-polyisoprenol, while the more polar lipid formed was shown to contain oligosaccharide. Little radioactivity from GDP[14C]mannose accumulated in insoluble product in the cell-free system, but supplying GDP[14C]mannose to intact endosperm tissue has shown that the major incorporation product in vivo is glycoprotein. This product was readily solubilized by either pronase or sodium dodecyl sulphate treatment suggesting it was membrane bound glycoprotein. Incorporation of mannose into mannosyl-phosphoryl-polyisoprenol during the cell-free assay was stimulated by the addition of dolichol monophosphate. This enzymic activity was optimal at pH 7.5 and in the presence of 10 mM Mg2+. The Km for GDP-mannose was estimated to be 5×10-7 M. Cellular mannosyl transferase activity changed markedly during early post-germinative growth; from being absent in the dry seed, enzyme activity increased to peak between the second and third days of growth and subsequently declined.Abbreviations TCA trichloroacetic acid - SDS sodium dodecyl sulphate  相似文献   

13.
Proplastids from developing castor bean endosperm have been isolated in a discontinuous sucrose density gradient. There was little contamination of the proplastids by mitochondria. Pyruvate kinase activity and phosphofructokinase activity closely correlated with triose phosphate isomerase activity, a proplastid marker, suggesting these two enzymes were contained in the proplastid. Aldolase was also found in the proplastids. The presence of these enzymes indicates that a glycolytic pathway operates in the proplastid.  相似文献   

14.
De Luca V  Dennis DT 《Plant physiology》1978,61(6):1037-1039
Proplastids from developing castor bean (Ricinus communis) endosperm have a pyruvate kinase activity which is extremely unstable on isolation from the organelle. It can be stabilized by 20 mm 2-mercaptoethanol in 20% ethylene glycol. In contrast the soluble pyruvate kinase is stable at 60 C for 10 minutes. The two activities have different pH optima. The soluble and the proplastid activities are eluted from a diethylaminoethyl-Sephadex A-25 sievorptive column at different ionic strengths.  相似文献   

15.
The N-linked oligosaccharides found on the lysosomal enzymes from Dictyostelium discoideum are highly sulfated and contain methylphosphomannosyl residues (Gabel, C. A., Costello, C. E., Reinhold, V. N., Kurtz, L., and Kornfeld, S. (1984) J. Biol. Chem. 259, 13762-13769). Here we report studies done on the structure of N-linked oligosaccharides found on proteins secreted during growth, a major portion of which are lysosomal enzymes. Cells were metabolically labeled with [2-3H]Man and 35SO4 and a portion of the oligosaccharides were released by a sequential digestion with endoglycosidase H followed by endoglycosidase/peptide N-glycosidase F preparations. The oligosaccharides were separated by anion exchange high performance liquid chromatography into fractions containing from one up to six negative charges. Some of the oligosaccharides contained only sulfate esters or phosphodiesters, but most contained both. Less than 2% of the oligosaccharides contained a phosphomonoester or an acid-sensitive phosphodiester typical of the mammalian lysosomal enzymes. A combination of acid and base hydrolysis suggested that most of the sulfate esters were linked to primary hydroxyl groups. The presence of Man-6-SO4 was demonstrated by the appearance of 3,6-anhydromannose in acid hydrolysates of base-treated, reduced oligosaccharides. These residues were not detected in acid hydrolysates without prior base treatment or in oligosaccharides first treated by solvolysis to remove sulfate esters. Based on high performance liquid chromatography quantitation of percentage of 3H label found in 3,6-anhydromannose, it is likely that Man-6-SO4 accounts for the majority of the sulfated sugars in the oligosaccharides released from the secreted glycoproteins.  相似文献   

16.
Nonhistone proteins were extracted in 0.4 M NaCl from membrane-depleted nuclei of HeLa cells grown in the presence or the absence of [5,6-3H]fucose. Control experiments strongly suggest that most extracted proteins were indeed nuclear components. Several proteins, present in the 0.4 M NaCl nuclear extract, with M(r) ranging from 35,000 to 115,000 were identified on Western blots as fucosylated glycoproteins owing to their binding to the fucose-specific lectin, Ulex europeus agglutinin I. Results of experiments involving mild alkaline treatment and peptide N-glycosidase F digestion showed that the carbohydrate moieties of these fucosylated nuclear glycoproteins were N-linked to the polypeptide backbone. Analysis of the N-glycans revealed the presence of two populations of sialylated oligosaccharides on the basis of their relative molecular masses. The sensitivity of the high-M(r) oligosaccharides to endo-beta-galactosidase and their incorporation of [3H]glucosamine suggest that they could contain repeating N-acetyllactosamine units. [3H]Fucose incorporated into nuclei was confined to the nucleoli, as judged by autoradiography of sections cut through cells grown in the presence of [3H]fucose. Electron microscopy autoradiography showed that the fibrillar centers were never labeled, while silver grains were observed on the dense and the granular components of nucleoli. Taking into account of these data most nuclear fucosylated glycoproteins extracted in 0.4 M NaCl might be nucleolar ribonucleoproteins.  相似文献   

17.
Bowden L  Lord JM 《Plant physiology》1978,61(2):259-265
Sucrose density gradient centrifugation was employed to separate microsomes, mitochondria, and glyoxysomes from homogenates prepared from castor bean (Ricinus communis) endosperm. In the case of tissue removed from young seedlings, a significant proportion of the characteristic glyoxysomal enzyme malate synthase was recovered in the microsomal fraction. Malate synthase was purified from both isolated microsomes and glyoxysomes by a procedure involving osmotic shock, KCI solubilization, and sucrose density gradient centrifugation. All physical and catalytic properties examined were identical for the enzyme isolated from both organelle fractions. These properties include a molecular weight of 575,000, with a single subunit type of molecular weight 64,000, a pH optimum of 8, apparent Km for acetyl-CoA of 10 μm and glyoxylate of 2 mm. Microsomal and glyoxysomal malate synthases showed identical responses to various inhibitors. Adenine nucleotides were competitive inhibitors with respect to acetyl-CoA, and oxalate (Ki 110 μm) and glycolate (Ki 150 μm) were competitive inhibitors with respect to glyoxylate. Antiserum raised in rabbits against purified glyoxysomal malate synthase was used to confirm serological identity between the microsomal and glyoxysomal enzymes, and was capable of specifically precipitating 35S-labeled malate synthase from KCI extracts of both microsomes and glyoxysomes isolated from [35S]methionine-labeled endosperm tissue.  相似文献   

18.
l-Glycerol 3-phosphate dehydrogenase has been isolated and partially purified from the endosperm of developing castor beans. The enzyme is entirely cytosolic and is not found in the plastid fraction. No activity was found in germinating castor beans. The pH optimum for the reduction of dihydroxyacetone phosphate is 8.1 and is 9.6 for the reverse reaction. The molecular weight determined by gel filtration chromatography is between 71,000 and 83,000. Both substrates show substrate inhibition at concentrations about 13 μm for NADH and 400 μm for dihydroxyacetone phosphate. Substrate interaction kinetics gave limiting Km values of 2.7 and 35.5 μm for NADH and dihydroxyacetone phosphate, respectively. Substrate interaction and product inhibition kinetics were consistent with an ordered sequential mechanism with NADH being the first substrate to bind and NAD+ being the last product to dissociate.  相似文献   

19.
The structures of high molecular weight sulfated oligosaccharide chains in mucins purified from the sputum of a patient with cystic fibrosis and blood group H determinant were established. Reduced oligosaccharides released by treatment with alkaline borohydride were separated by ion exchange chromatography on DEAE-Agarose and a fraction containing multisulfated chains was further purified by lectin affinity chromatography to completely remove small amounts of sialylated chains. A major sulfated oligosaccharide fraction containing chains with an average of 160 to 200 sugar residues was isolated by gel filtration on BioGel P-10 columns and individual subfractions were characterized by methylation analysis, periodate oxidation and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GldNAc in a ratio of 1:2:2.1 and only one galactosaminitol residue for every 160-to 200 sugar residues. The average molecular weight of oligosaccharide chains in these fractions was between 27,000 and 40,000 daltons. Structural analysis showed that these high molecular weight chains contained varying amounts of the repeating unit shown in the following oligosaccharide. Only one in about every 10 repeating units contained sulfate esters.Several shorter chains which contain 2 to 3 sulfate esters were also isolated from this multisulfated oligosaccharide fraction. The structures proposed for these oligosaccharides indicate that they are lower molecular weight chains with the same general structure as those found in the high molecular weight sulfated oligosaccharides. Taken collectively, the results of these studies show that a major sulfated oligosaccharide fraction in resporatory mucin purified from the mucus of patients with cystic fibrosis contains high molecular weight branched chains that consist of a repeating oligosaccharide sequence with sulfate linked to the 6 positions of galactose and possibly GlcNAc residues in the side chains.  相似文献   

20.
Isozymes of pyruvate kinase (PK) have been isolated from developing castor bean endosperm. One isozyme, PKc, is localized in the cytosol, and the other, PKp, is in the plastid. Both isozymes need monovalent and divalent cations for activity, requirements which can be filled by K+ and Mg2+. Both isozymes are inhibited by citrate, pyruvate, and ATP. PKc has a much broader pH profile than PKp and is also more stable. Both have the same Km (0.05 millimolar) for PEP, but PKp has a 10-fold higher Km (0.3 millimolar) for ADP than PKc (0.03 millimolar). PKc also has a higher affinity for alternate nucleotide substrates than PKp. The two isozymes have different kinetic mechanisms. Both have an ordered sequential mechanism and bind phosphoenolpyruvate before ADP. However, the plastid isozyme releases ATP first, whereas pyruvate is the first product released from the cytosolic enzyme. The properties of the two isozymes are similar to those of their counterparts in green tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号