首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In vitro analysis of the pea chloroplast 16S rRNA gene promoter.   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

5.
6.
7.
8.
The TOP3 gene of the yeast Saccharomyces cerevisiae was postulated to encode a DNA topoisomerase, based on its sequence homology to Escherichia coli DNA topoisomerase I and the suppression of the poor growth phenotype of top3 mutants by the expression of the E. coli enzyme (Wallis, J.W., Chrebet, G., Brodsky, G., Golfe, M., and Rothstein, R. (1989) Cell 58, 409-419). We have purified the yeast TOP3 gene product to near homogeneity as a 74-kDA protein from yeast cells lacking DNA topoisomerase I and overexpressing a plasmid-borne TOP3 gene linked to a phosphate-regulated yeast PHO5 gene promoter. The purified protein possesses a distinct DNA topoisomerase activity: similar to E. coli DNA topoisomerases I and III, it partially relaxes negatively but not positively supercoiled DNA. Several experiments, including the use of a negatively supercoiled heteroduplex DNA containing a 29-nucleotide single-stranded loop, indicate that the activity has a strong preference for single-stranded DNA. A protein-DNA covalent complex in which the 74-kDa protein is linked to a 5' DNA phosphoryl group has been identified, and the nucleotide sequences of 30 sites of DNA-protein covalent complex formation have been determined. These sequences differ from those recognized by E. coli DNA topoisomerase I but resemble those recognized by E. coli DNA topoisomerase III. Based on these results, the yeast TOP3 gene product can formally be termed S. cerevisiae DNA topoisomerase III. Analysis of supercoiling of intracellular yeast plasmids in various DNA topoisomerase mutants indicates that yeast DNA topoisomerase III has at most a weak activity in relaxing negatively supercoiled double-stranded DNA in vivo, in accordance with the characteristics of the purified enzyme.  相似文献   

9.
10.
11.
D Knebel  H Lübbert    W Doerfler 《The EMBO journal》1985,4(5):1301-1306
In lepidopteran insect cells infected with the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV), two major late viral gene products are expressed: the polyhedrin, a 28 000 mol. wt. protein which makes up the mass of the nuclear inclusion bodies, and a 10 000 mol. wt. protein (p10) whose function is unknown. The nucleotide sequences of these strong promoters conform to those of other eukaryotic promoters and are rich in AT base pairs. We used the pSVO-CAT construct containing the prokaryotic gene chloramphenicol acetyl transferase (CAT) to study the function of the p10 gene promoter in insect and mammalian cells. Upon transfection of the pAcp10-CAT construct, which contained 402 bp of the p10 gene of AcNPV DNA in the HindIII site of pSVO-CAT, CAT activity was determined. The p10 gene promoter was inactive in human HeLa cells and in uninfected Spodoptera frugiperda insect cells. The same promoter was active, however, in AcNPV-infected S. frugiperda cells and exhibited optimal activity when cells were transfected 18 h after infection with the insect virus. This finding demonstrated directly that the p10 gene promoter required other viral gene products for its activity in insect cells. The nature of these products was unknown. The p10 gene promoter sequence contained one 5'-CCGG-3' site 40 bp upstream from the cap site of the gene and two such sites 178 and 192 bp downstream from the ATG initiation codon of the gene. Since Drosophila DNA or S. frugiperda DNA contained no 5-methylcytosine or extremely small amounts of it, we were interested in determining the effect of site-specific methylations on the p10 gene insect virus promoter. Methylation at the 5'-CCGG-3' sites led to a block of this promoter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
15.
16.
DNA sequence-specific binding proteins eluted from chicken erythrocyte and thymus nuclei, and fractionated as described by Emerson and Felsenfeld (19), have been investigated by filter binding and footprint analyses. The erythrocyte nuclear protein fraction specifically binds to at least two sites within the 5' flanking chromatin hypersensitive site of the chicken beta A-globin gene, and to a site 5' to the human beta-globin gene. The major chicken beta A globin gene binding site [G)18CGGGTGG) and the human beta-globin gene binding site [TA)6(T)8C(T)4) occur at or near sequences which are hypersensitive to S1 nuclease cleavage in supercoiled plasmids. Downstream, the second chicken beta A-globin gene binding site includes the beta-globin gene CACCC consensus sequence. Filter binding studies also show other sequence specific binding activities to human N-ras and human (but not chicken) c-myc gene sequences.  相似文献   

17.
18.
19.
A 2.9 kbp region from within the inverted repeat of Nicotiana chloroplast DNA hybridized with a chloroplast DNA fragment from Euglena containing the complete rps12 gene coding for ribosomal protein S12. Nucleotide sequencing within this region revealed the existance of two rps12 coding stretches interrupted by 540 bp having class II intron structure. Joining and decoding the exon regions produced a sequence of 85 amino acids colinear and 81% homologous to the S12 protein of Euglena chloroplasts and E. coli, starting from amino acid residue 38 to the stop codon. Immediately upstream of codon 38, conserved intron sequences were located. However, the 5' 37 codon of Nicotiana chloroplast rps12 could not be identified by electron microscopy of RNA-DNA hybrids within a DNA region extending 4000 bp upstream of codon 38, nor by computer search of a completely sequenced region extending for more than 9000 bp upstream of this codon. In E. coli, alteration in rps12 codons 42 or 87 causes streptomycin resistance. However, the nucleotide sequence of the identified rps12 exons in two Nicotiana chloroplast mutants resistant to streptomycin were found to be identical to that of wild type.  相似文献   

20.
The purpose of this study was to clone the carocin S1 gene and express it in a non-carocin-producing strain of Erwinia carotovora. A mutant, TH22-10, which produced a high-molecular-weight bacteriocin but not a low-molecular-weight bacteriocin, was obtained by Tn5 insertional mutagenesis using H-rif-8-2 (a spontaneous rifampin-resistant mutant of Erwinia carotovora subsp. carotovora 89-H-4). Using thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of the contiguous 2,280-bp region were determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequence fragment. ORF2 and ORF3 were identified with the carocin S1 genes, caroS1K (ORF2) and caroS1I (ORF3), which, respectively, encode a killing protein (CaroS1K) and an immunity protein (CaroS1I). These genes were homologous to the pyocin S3 gene and the pyocin AP41 gene. Carocin S1 was expressed in E. carotovora subsp. carotovora Ea1068 and replicated in TH22-10 but could not be expressed in Escherichia coli (JM101) because a consensus sequence resembling an SOS box was absent. A putative sequence similar to the consensus sequence for the E. coli cyclic AMP receptor protein binding site (-312 bp) was found upstream of the start codon. Production of this bacteriocin was also induced by glucose and lactose. The homology search results indicated that the carocin S1 gene (between bp 1078 and bp 1704) was homologous to the pyocin S3 and pyocin AP41 genes in Pseudomonas aeruginosa. These genes encode proteins with nuclease activity (domain 4). This study found that carocin S1 also has nuclease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号