首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The recombinant human malonyl-CoA decarboxylase (hMCD) was overexpressed in Escherichia coli with and without the first 39 N-terminal amino acids via a cleavable MBP-fusion construct. Proteolytic digestion using genenase I to remove the MBP-fusion tag was optimized for both the full length and truncated hMCD. The apo-hMCD enzymes were solubilized and purified to homogeneity. Steady-state kinetic characterization showed similar kinetic parameters for the MBP-fused and apo-hMCD enzymes with an apparent Km value of approximately 330-520 microM and a turnover rate kcat of 13-28s(-1). For the apo-hMCD enzymes, the N-terminal truncated hMCD was well tolerated over a broad pH range (pH 4-10); whereas the full-length hMCD appeared to be stable only at pH >/= 8.5. Our results showed that the N-terminal region of hMCD has no effect on the catalytic activity of the enzyme but plays a role in the folding process and conformation stability of hMCD.  相似文献   

2.
Malonyl-CoA decarboxylase was purified from goose uropygial gland, reduced, carboxymethylated, and digested with trypsin. Several peptides were purified by high performance liquid chromatography and their amino acid sequences determined. Oligonucleotide probes were prepared based on their amino acid sequences. Size-selected RNA from the goose uropygial gland was used to construct cDNA libraries in lambda gt11 and pUC9 vectors. Immunological screening of the lambda gt11 cDNA library yielded one clone, lambda DC1, which contained a 2.2-kilobase pair insert; hybridization with the synthetic oligonucleotide probes confirmed its identity as malonyl decarboxylase. Screening of the pUC9 cDNA library with the insert of lambda DC1 as a probe detected one clone, pDC2, with an insert of 2.9 kilobase pairs. The nucleotide sequences of the two cDNAs revealed an open reading frame encoding a polypeptide of 462 amino acids. The deduced amino acid sequence was confirmed as malonyl-CoA decarboxylase by matching it to the amino acid sequences of three tryptic peptides derived from mature enzyme. Northern blot analysis of mRNA from goose brain, kidney, liver, lung, and gland revealed malonyl-decarboxylase mRNA of 3000 nucleotides. Since clone pDC2 contains a 2928-nucleotide insert, it represents nearly the full length of mRNA. Brain, kidney, lung, and liver contained less than 1% of the malonyl-CoA decarboxylase mRNA in the gland. Southern blot analysis of genomic DNA showed a single band in both liver and gland, suggesting that malonyl-CoA decarboxylase is a single copy gene.  相似文献   

3.
A recombinant plasmid containing human interleukin 2 (IL2) cDNA was identified in a cDNA library constructed from mRNA derived from PHA-TPA induced splenocytes. Using this cDNA as a hybridization probe, a DNA fragment containing the IL2 gene was isolated from a collection of hybrid phages derived from human genomic DNA. A unique reading frame was identified from the nucleotide sequence derived from these plasmids coding for a polypeptide of 153 amino acids and containing a putative signal sequence of 20 amino acids. A mature polypeptide starting with either Met-Ala-Pro or Met-Pro was expressed in E. coli under control of the E. coli trp promoter or using a combination of the phage lambda PL promoter and a ribosome binding site derived from phage Mu. The bacterial IL2 polypeptide had a molecular weight of 15,000 daltons and accounted for more than 10% of the total E. coli proteins in fully induced cells; it was biologically active in the T-cell specific DNA synthesis assay, even after recovery from a SDS-containing polyacrylamide gel.  相似文献   

4.
Malonyl-CoA decarboxylase (MCD) catalyzes the proton-consuming conversion of malonyl-CoA to acetyl-CoA and CO(2). Although defects in MCD activity are associated with malonyl-CoA decarboxylase deficiency, a lethal disorder characterized by cardiomyopathy and developmental delay, the metabolic role of this enzyme in mammals is unknown. A computer-based search for novel peroxisomal proteins led to the identification of a candidate gene for human MCD, which encodes a protein with a canonical type-1 peroxisomal targeting signal of serine-lysine-leucine(COOH). We observed that recombinant MCD protein has high intrinsic malonyl-CoA decarboxylase activity and that a malonyl-CoA decarboxylase-deficient patient has a severe mutation in the MCD gene (c.947-948delTT), confirming that this gene encodes human MCD. Subcellular fractionation experiments revealed that MCD resides in both the cytoplasm and peroxisomes. Cytoplasmic MCD is positioned to play a role in the regulation of cytoplasmic malonyl-CoA abundance and, thus, of mitochondrial fatty acid uptake and oxidation. This hypothesis is supported by the fact that malonyl-CoA decarboxylase-deficient patients display a number of phenotypes that are reminiscent of mitochondrial fatty acid oxidation disorders. Additional support for this hypothesis comes from our observation that MCD mRNA is most abundant in cardiac and skeletal muscles, tissues in which cytoplasmic malonyl-CoA is a potent inhibitor of mitochondrial fatty acid oxidation and which derive significant amounts of energy from fatty acid oxidation. As for the role of peroxisomal MCD, we propose that this enzyme may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids.  相似文献   

5.
人防御素HNP-1基因在原核系统中的克隆与表达   总被引:1,自引:0,他引:1  
通过化学合成法制备人防御素 HNP- 1基因 ,并将其构建于带有 GST基因的表达载体中 ,进行融合表达 ,表达融合蛋白可占菌体蛋白的 70 %左右 ,且主要以包含体形式存在。改变培养条件可适当提高可溶性融合蛋白的比例。融合蛋白通过凝胶色谱进行纯化 ,然后经凝血酶切释放出防御素多肽 ,并通过抑菌试验对其活性进行检测。结果显示 ,可能由于分子间的二硫键错配造成了防御素分子构象改变 ,使制备的防御素分子未显示出活性  相似文献   

6.
7.
8.
From the albumin gland of the snail Cepaea hortensis we isolated and characterized a new N-acetyl-D-galactosamine/N-acetyl-D-glucosamine (GalNAc/GlcNAc) specific lectin (CHA-II) which was purified by a combination of affinity chromatography on GalNAc-agarose and gel filtration. The purified native lectin was found to be a multimeric protein, as revealed by SDS-PAGE and MALDI-TOF analysis. In SDS-PAGE the denatured and reduced lectin showed two bands of molecular masses with 17 and 15.5 kDa which reacted equally with anti-CHA-II rabbit antiserum. The lectin was O- and N-glycosylated with [(Gal)2-Man]2-Man-GlcNAc-GlcNAc-Asn as a probable structure for the oligosaccharide. Isoelectric focusing revealed a heterogeneous protein of at least four bands around pH 8.7. Tryptic peptides of CHA-II were N-terminally sequenced and highly degenerated gene specific oligonucleotide primers (GSPs) had been constructed. Using total RNA isolated from albumin glands, cDNAs were produced by the running race technique. Specific PCR fragments were obtained by PCR using GSPs, the universal primer and 5'- or 3'-RACE-cDNAs. The amplified fragments were cloned into the vector pDrive and were sequenced. The resulting total cDNA sequence consisted of 496 base pairs including an open reading frame of 360 base pairs which encoded a protein of 120 amino acids. The protein carried a putative signal peptide. The mature protein was predicted to comprise 99 amino acid residues with a calculated molecular weight of 11,239 Da. The PCR fragment encoding the mature protein was cloned into the vector pQE30 and expressed in E. coli. Recombinant CHA-II lectin was produced as inclusion bodies and extracted by 6 M guanidine hydrochloride. After refolding, the recombinant CHA-II agglutinated specifically human red blood cells of groups A and AB. In immunodiffusion experiments using rabbit antiserum raised against the native lectin, the protein showed a precipitation line of identity with the native lectin.  相似文献   

9.
Wang Q  He P  Lu D  Shen A  Jiang N 《Journal of biochemistry》2004,136(4):447-455
In the production of pyruvate and optically active alpha-hydroxy ketones by Torulopsis glabrata, pyruvate decarboxylase (PDC, EC 4.1.1.1) plays an important role in pyruvate metabolism and in catalyzing the biotransformation of aromatic amino acid precursors to alpha-hydroxy ketones. In this paper, we have purified and characterized PDC from T. glabrata IFO005 and cloned the corresponding gene. A simple, rapid and efficient purification protocol was developed that provided PDC with high specific activity. Unlike other yeast or higher plant enzymes, known as homotetramers (alpha(4) or beta(4)) or heterotetramers (alpha(2)beta(2)), two active isoforms of PDC purified from T. glabrata IFO005 were homodimeric proteins with subunits of 58.7 kDa. We isolated the T. glabrata PDC gene encoding 563 amino acid residues and succeeded in overproducing the recombinant PDC protein in Escherichia coli, in which the product amounted to about 10-20% of the total protein of the cell extract. Recombinant PDC from E. coli was purified as a homotetramer. Targeted gene disruption of PDC confirmed that T. glabrata has only one gene of PDC. This PDC gene showed about 80% homology with the genes of other yeasts, and amino acid residues involved in the allosteric site for pyruvate in other yeast PDCs were conserved in T. glabrata PDC. Both native PDC and recombinant PDC were activated by pyruvate and exhibited sigmoidal kinetics similar to those of Saccharomyces cerevisiae and higher plants. They also exhibited the similar catalytic properties: low thermostability, similar pH stability and optimal pH, and complete inhibition by glyoxylate.  相似文献   

10.
Lipid infusion or ingestion of a high-fat diet results in insulin resistance, but the mechanism underlying this phenomenon remains unclear. Here we show that, in rats fed a high-fat diet, whole-animal, muscle and liver insulin resistance is ameliorated following hepatic overexpression of malonyl-coenzyme A (CoA) decarboxylase (MCD), an enzyme that affects lipid partitioning. MCD overexpression decreased circulating free fatty acid (FFA) and liver triglyceride content. In skeletal muscle, levels of triglyceride and long-chain acyl-CoA (LC-CoA)-two candidate mediators of insulin resistance-were either increased or unchanged. Metabolic profiling of 36 acylcarnitine species by tandem mass spectrometry revealed a unique decrease in the concentration of one lipid-derived metabolite, beta-OH-butyrate, in muscle of MCD-overexpressing animals. The best explanation for our findings is that hepatic expression of MCD lowered circulating FFA levels, which led to lowering of muscle beta-OH-butyrate levels and improvement of insulin sensitivity.  相似文献   

11.
12.
13.
Ornithine decarboxylase from the African trypanosome is an important target for antitrypanosomal chemotherapy. Despite this, the enzyme had not been previously purified or extensively characterized as it is a very low level protein. In this paper we describe the purification of Trypanosoma brucei brucei ornithine decarboxylase from bloodstream form trypomastigotes by 107,000-fold to a specific activity of 2.7 x 10(6) nmol CO2/h/mg of protein in the parasite. T. brucei ornithine decarboxylase had a native molecular weight of 90,000 and a subunit molecular weight of 45,000. The isoelectric point of the protein was 5.0. The Km for ornithine was 280 microM and the Ki for the irreversible inhibitor alpha-difluoromethylornithine (DFMO) was 220 microM with a half-time of inactivation at saturating DFMO concentration of 2.7 min. T. brucei ornithine decarboxylase appears similar to mouse ornithine decarboxylase, further supporting our previous suggestion that the selective toxicity of DFMO to the parasite is not due to catalytic differences between the two proteins. Although a small quantity of T. brucei ornithine decarboxylase was purified from T. brucei, extensive structural and kinetic studies will require a more ample source of the enzyme. We therefore expressed our previously cloned T. brucei ornithine decarboxylase gene in Escherichia coli using a vector that contains an inducible lambda promoter. T. brucei ornithine decarboxylase activity was induced in E. coli to levels that were 50 to 200 fold of that present in the long-slender bloodstream form of T. brucei. Ornithine decarboxylase activity in the crude E. coli lysate was 1500-6000 nmol of CO2/h/mg of protein and represented 0.05-0.2% of the total cell protein. The recombinant T. brucei ornithine decarboxylase was purified to apparent homogeneity from the transformed E. coli. The purified recombinant enzyme had kinetic and physical properties essentially identical to those of the native enzyme.  相似文献   

14.
鲤鱼肥胖基因的分子克隆及在大肠杆菌中的表达   总被引:2,自引:0,他引:2  
为了研究鲤鱼肥胖基因的结构特点和体外表达产物的生物学活性 ,利用RT PCR技术从鲤鱼肠系膜脂肪组织中扩增出鲤鱼肥胖基因的cDNA编码序列 ,分析表明该cDNA序列由 4 38个核苷酸组成 ,编码 14 6个氨基酸组成的多肽 ,鲤鱼肥胖基因与人、猪、鼠的相比 ,核苷酸同源性分别为 :84 %、 86 %、 95 % ;氨基酸的同源性分别为 84 %、 82 %、 96 %。构建了原核表达载体 pET 2 8a li,利用IPTG在大肠杆菌中进行了诱导表达 ,并对表达产物进行了初步纯化和生物活性检测 ,结果表明 ,鲤鱼肥胖基因在大肠杆菌中进行了高效特异性融合表达 ,融合蛋白质分子量约为 2 0kD ,经薄层扫描分析 ,目的蛋白占菌体总蛋白的 2 0 3%。表达产物经过纯化和复性能够明显抑制小鼠的摄食和生长 ,说明表达产物Leptin具有明显的生物学活性  相似文献   

15.
A plasmid designated pNF101 was isolated by transforming rad10 mutants with a yeast genomic library and screening transformed cells for enhanced resistance to killing by u.v. radiation. Plasmid pNF101 fully complements the u.v. sensitivity of rad10 mutant strains and was shown to contain the RAD10 gene by genetic analysis of integrant strains. The nucleotide sequence of the RAD10 gene was determined. The coding region consists of 195 codons and could encode a polypeptide of calculated mol. wt. 22 616 daltons. RAD10 protein expressed in Escherichia coli maxicells has a mol. wt of approximately 30 kd measured by gel electrophoresis. The RAD10 gene was localized to chromosome XIII of Saccharomyces cerevisiae by hybridization of the cloned gene to yeast chromosomes resolved by electrophoresis, and by genetic analysis.  相似文献   

16.
戴汉川  龙良启  丁光 《动物学报》2005,51(1):95-100
为了研究鲤鱼肥胖基因的结构特点和体外表达产物的生物学活性,利用RT-PCR技术从鲤鱼肠系膜脂肪组织中扩增出鲤鱼肥胖基因的cDNA编码序列,分析表明该cDNA序列由438个核苷酸组成,编码146个氨基酸组成的多肽,鲤鱼肥胖基因与人、猪、鼠的相比,核苷酸同源性分别为84%、86%、95%;氨基酸的同源性分别为84%、82%、96%.构建了原核表达载体pET-28a-li,利用IPTG在大肠杆菌中进行了诱导表达,并对表达产物进行了初步纯化和生物活性检测,结果表明,鲤鱼肥胖基因在大肠杆菌中进行了高效特异性融合表达,融合蛋白质分子量约为20 kD,经薄层扫描分析,目的蛋白占菌体总蛋白的20.3%.表达产物经过纯化和复性能够明显抑制小鼠的摄食和生长,说明表达产物Leptin具有明显的生物学活性[动物学报 51(1)95-100,2005].  相似文献   

17.
18.
19.
20.
A highly active amide hydrolase (DamH) was purified from Delftia sp. T3-6 using ammonium sulfate precipitation, diethylaminoethyl anion exchange, hydrophobic interaction chromatography, and Sephadex G-200 gel filtration. The molecular mass of the purified enzyme was estimated to be 32 kDa by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis. The sequence of the N-terminal 15 amino acid residues was determined to be Gly-Thr-Ser-Pro-Gln-Ser-Asp-Phe-Leu-Arg-Ala-Leu-Phe-Gln-Ser. Based on the N-terminal sequence and results of peptide mass fingerprints, the gene (damH) was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). DamH was a bifunctional hydrolase showing activity to amide and ester bonds. The specific activities of recombinant DamH were 5,036 U/mg for 2′-methyl-6′-ethyl-2- chloroacetanilide (CMEPA) (amide hydrolase function) and 612 U/mg for 4-nitrophenyl acetate (esterase function). The optimum substrate of DamH was CMEPA, with K m and k cat values of 0.197 mM and 2,804.32 s?1, respectively. DamH could also hydrolyze esters such as 4-nitrophenyl acetate, glycerol tributyrate, and caprolactone. The optimal pH and temperature for recombinant DamH were 6.5 and 35 °C, respectively; the enzyme was activated by Mn2+ and inhibited by Cu2+, Zn2+, Ni2+, and Fe2+. DamH was inhibited strongly by phenylmethylsulfonyl and SDS and weakly by ethylenediaminetetraacetic acid and dimethyl sulfoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号