首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Poly(L -lysine) was reacted with various azo-reagents, including p-phenylazobenzoic acid, p-phenylazobenzoyl chloride, and p-phenylazobenzoic N-hydroxy-succinimide ester, to give polypeptides containing 5–44 mol % azobenzene units in the side chains. The conformation of the azo-modified polypeptides was investigated in connection with their photochromic behavior caused by the trans ? cis photoisomerization of the azo groups present in the side chains. In methanol/water solvent mixture, the 20% azo-poly(L -lysine) adopts the α-helix conformation. The helix stability was found to be higher when the azo side chains are in cis than when they are in trans configuration. So irradiation at 340 nm (trans-to-cis isomerization), and alternately at 450 nm (cis-to-trans isomerization), produced reversible variations of the α-helix content. In hexafluoro-2-propanol/water/sodium dodecyl sulfate mixture, the 43% azo-poly(L -lysine) adopts a β-structure, as indicated by CD spectra. Irradiation at 340 nm caused the disruption of the β-structure and promoted the α-helix conformation. The effect was reversed upon irradiation at 450 nm. The photoinduced β ? helix change was explained on the basis of the different geometry and hydrophobic character of the trans and the cis azobenzene units.  相似文献   

3.
Poly-L-alpha,beta-diaminopropionic acid) having azo aromatic side chain was synthesized by the water-soluble carbodiimide procedure. The photochemical properties of the azo polypeptide poly[N beta-p-(phenylazo)benzoyl-L-alpha,beta-diaminopropionic acid] (PPABLDPA) was investigated by absorption and circular dichroism (c.d.) spectroscopy in hexafluoro-2-propanol (HFIP) and dimethylformamide. The photochromism of the absorption band in the visible and ultraviolet wavelength regions was found to be mostly reversible as a function of irradiation time at different wavelengths due to the photostationary state (88% trans)-cis photoisomerization of the azo aromatic moieties. The c.d. spectra exhibited two and three-stage photochromism on irradiation by light. The reversible photo-induced solubility change was also studied. On irradiation PPABLDPA is soluble under ultraviolet light (cis) and precipitates under visible light (88% trans) in HFIP-water. A discussion was presented that includes our previous results on this azo aromatic polylysine homologue series.  相似文献   

4.
M N Boyden  S A Asher 《Biochemistry》2001,40(45):13723-13727
We used UV resonance Raman spectroscopy (UVRR) excited within the peptide bond pi --> pi* electronic transitions and within the aromatic amino acid pi --> pi* electronic transitions to examine the temperature dependence of the solution conformation of betanova, a 20-residue beta-sheet polypeptide [Kortemme, T., Ramirez-Alvarado, M., and Serrano, L. (1998) Science 281, 253-256]. The 206.5 nm excited UVRR enhances the amide vibrations and demonstrates that betanova has a predominantly beta-sheet structure between 5 and 82 degrees C. The 229 nm excited UVRR, which probes the tyrosine and tryptophan side chain vibrations, shows an increase in the solvent exposure of the tryptophan side chains as the temperature is increased. Our results are consistent with the existence of an intermediate state similar to that calculated by Bursulaya and Brooks [Bursulaya, B. D., and Brooks, C. L. (1999) J. Am. Chem. Soc. 121, 9947-9951] and exclude the previously proposed two-state cooperative folding mechanism. Betanova's structure appears to be molten globule over the 3-82 degrees C temperature range of our study.  相似文献   

5.
Small-angle neutron scattering of the trans-unsaturated DEPC has been investigated as a function of pressure at 12, 18.6 and 35 degrees C. A pressure-induced structural phase transition from a liquid-crystalline state to a gel state is observed at the temperatures studied. The critical pressure of this transition increases with increasing temperature with a delta P/delta T value of 51 bar/C degrees. The small-angle neutron scattering results indicate that the effect of the trans double bonds in DEPC is to enhance the conformational disorder in the hydrocarbon chains. In DEPC bilayers, a pressure-induced conformational ordering process is observed not only in the liquid-crystalline phase but also in the gel phase, which indicates that conformational disorder exists in the liquid-crystalline phase as well as in the gel phase.  相似文献   

6.
BackgroundTagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.MethodsThe catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.ResultsWe demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.ConclusionsWe reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.General significanceOverall our results demonstrate for the first time that streptavidin–biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.  相似文献   

7.
Isolated complexes of apolipoprotein A-I (apoA-I), the major apoprotein of human plasma high-density lipoproteins, and dimyristoylphosphatidylcholine (DMPC) have been prepared and studied by differential scanning calorimetry (DSC) and Raman spectroscopy. DSC studies establish that complexes having lipid to protein ratios of 200, 100, and 50 to 1 each exhibit a broad reversible thermal transition at Tc = 27 degrees C. The enthalpy of lipid melting for each of the three complexes is about 3 kcal/mol of DMPC. Raman spectroscopy indicates that the physical state of lipid molecules in the complexes is different from that in DMPC multilamellar liposomes. Analysis of the C-H stretching region (2800-3000 cm-1) of the complexes and of the pure components in water suggests that below 24 degrees C (Tc for DMPC) there is considerably less lateral order among lipid acyl chains in the complexes than in DMPC liposomes. Above 24 degrees C, these types of interactions appear to contribute equally or slightly less to the complex structure than in pure DMPC. The temperature dependence of peaks in the C-C stretching region (1000-1180 cm-1) reveals a continuous increase in the number of lipid acyl chain C-C gauche isomers over a broad range with increasing temperature. Compared to liposomes, DMPC in the complexes has more acyl chain trans isomers at temperatures above 24 degrees C; at temperatures above ca. 30 degrees C, trans isomer content is about the same for complexes and liposomes. A large change was observed in a protein vibrational band at 1340 cm-1 for pure vs. complexed apoA-I, indicating that protein hydrocarbon side chains are immobilized by lipid binding. The Raman data indicate that the reduction in melting enthalpy for complexes DMPC (approximately 3 kcal/mol) compared to that for free DMPC (approximately 6 kcal/mol) is due to reduced van der Waals interactions in the low-temperature lipid phase.  相似文献   

8.
Even though glycosylphosphatidylinositol (GPI)-anchored proteins lack direct structural contact with the intracellular space, these ubiquitously expressed surface receptors activate signaling cascades and endocytosis when crosslinked by extracellular ligands. Such properties may be due to their association with membrane microdomains composed of glycosphingolipids, cholesterol and some signaling proteins. In this study, we hypothesize that GPI proteins may be required for crosslinking-mediated endocytosis of extracellular bioconjugates. To test this hypothesis, we first biotinylated the surface membranes of native K562 erythroleukemia cells versus K562 cells incapable of surface GPI protein expression. We then compared the entry of fluorescently labeled avidin or DNA condensed on polyethylenimine-avidin bioconjugates into the two biotinylated cell populations. Using fluorescence microscopy, nearly 100% efficiency of fluorescent avidin endocytosis was demonstrated in both cell types over a 24 h period. Surprisingly, plasmid DNA transfer was slightly more efficient among the biotinylated GPI-negative cells as measured by the expression of green fluorescence protein. Our findings that GPI proteins are not required for the endocytosis of avidin bioconjugates into biotinylated cells suggest that endocytosis associated with general membrane crosslinking may be due to overall reorganization of the membrane domains rather than GPI protein-specific interactions.  相似文献   

9.
Photochromic polypeptides, with 16 to 56% azobenzene groups in the side chains, have been prepared by reaction of poly(L -glutamic acid) with p-aminozaobenzene, both in the presence of dicyclohexyl carbodiimide/N-hydroxybenzotriazole and of pivaloyl chloride. Analogous modification reactions carried out on poly(L -aspartic acid) were unsuccessful owing to the formation of N-succinimide rings. In trimethylphosphate, all the azopolypeptides exhibit the α-helix CD pattern. Irradiation produces the trans-to-cis isomerization of the azo side chains, but does not induce any variations of the backbone conformation. In water, the CD spectra indicate the presence of appreciable amounts of α helix in 16 and 21% mol azo-containing poly-(L glutamates), while a β structure is present in a 36% mol azopolypeptide. Light produces conformational changes of the polypeptide conformation which are completely reversed in the dark. The extent and kind of photobehavior depend on the azo content and the pH value at which irradiation is carried out. The light-induced effects are discussed on the basis of the pH-induced order-disorder conformational transitions. In fact, the pK values and the transition curves of the dark-adapted samples were found to be different from those of the irradiated ones.  相似文献   

10.
Here we demonstrate that biotin covalently attached to cell surface obligates existing receptors to endocytose avidin bioconjugates into nucleated cells. Incubation of fluorescein-labeled avidin with biotinylated cell lines resulted in uniform and rapid surface attachment and endocytosis compared with no detectable association of the avidin-conjugated dye with unbiotinylated cells. Uptake was detected within minutes with efficiencies approaching 100% in cell lines and freshly obtained peripheral blood mononuclear cells. After 24 h, avidin was barely detectable on the surface of the nucleated cells. In marked contrast, fluorescent avidin remained exclusively on the external membrane of erythrocytes after 24 h. To investigate biotin-mediated endocytosis for the delivery of DNA, we prepared polyethylenimine-avidin (PEI-avidin) conjugates. Surface biotinylation significantly increased the transfection efficiencies of PEI-avidin condensed plasmid DNA coding green fluorescent protein (GFP) to the level of transferrin-receptor targeted gene delivery (15-20% GFP positive cells in culture after 48 h). The increase in transfection efficiency was blocked by the addition of free avidin or biotin to the culture medium. Biotin covalently bound to cell surface membrane proteins efficiently mediates the entry of avidin bioconjugates into nucleated cells.  相似文献   

11.
The synthesis and the solution behavior of the linear peptides containing a beta-homo (beta-H) leucine residue-Boc-Leu-beta-HLeu-Leu-OMe, Boc-beta-HLeu-Leu-beta-HLeu-Leu-OMe, and Boc-Leu-beta-HLeu-Leu-beta-HLeu-Leu-OMe-as well as the solid structure of the tripeptide, are reported. The conformational behavior of the peptides was investigated in solution by two-dimensional nmr. Our data support the existence in solution with different families of conformers in rapid interchange. The crystals of the tripeptide are orthorhombic, space group P2(1)2(1)2, with a = 15.829(1) A, b = 29.659(1) A, c = 6.563(1) A, and Z = 4. The structure has been solved by direct methods and refined to final R1 and wR2 indexes of 0.0530 and 0.1436 for 2420 reflections with I > 2sigma(I). In the solid state, the tripeptide does not present intramolecular H bonds, and the peptide backbone of the two leucine residues adopts a quasi-extended conformation. For the beta-HLeu residue, the backbone conformation is specified by the torsion angles straight phi(2) = -120.9(4) degrees, mu(2) = 56.7(4) degrees, psi(3) = -133.2(4) degrees. The side chains of the three residues assume the same conformation (g(-), g(-), trans), and all peptide bonds, except the urethane group at the N-terminus, are in the trans conformation. Preliminary conformational energy calculations carried out on the Ac-NH-beta-HAla-NHMe underline that the conformations with mu angle equal to 180 degrees and 60 degrees assume lower energy with respect to the others. In addition, we found a larger conformational freedom for the psi angle with respect to the straight phi angle.  相似文献   

12.
Biotin-avidin recognition is studied by Fourier transform ir spectroscopy/attenuated total reflection (FTIR/ATR) under physiological conditions. The ureido portion of biotin is confirmed to be involved in the interaction with avidin, as previously found, but when the biotin-avidin complex forms, an electrostatic interaction occurs between the carboxylate group of the biotin molecule and the protonated aminic end group of the avidin amino acid side chains. Comparison of the biotin-avidin system with the biotin-1,4-diaminobutane and biotin-tryptophan systems confirms these findings.  相似文献   

13.
Nonbleachable rhodopsins containing retinal moieties with fixed 11-ene structures have been prepared. When the nonbleachable rhodopsin analogue corresponding to the natural pigment was flash-photolysed at 20.8 degrees C, no absorption changes occurred at the monitoring wavelengths of 380, 480, and 580 nm for the time range of 2 microseconds--10 s. This observation is in contrast to that of natural rhodopsin which showed the formation of metarhodopsin I and its decay to meta II. Irradiation of the artificial rhodopsin, 77 K, with light of 460 and 540 nm, also gave no spectral changes; in the case of natural rhodopsin, however, the irradiation leads to formation of the red-shifted intermediate bathorhodopsin. The absence of photochemistry in the artificial pigment shows that an 11-cis to trans photoisomerization of the retinal moiety is a crucial step in inducing the chain of events in te photolysis of rhodopsin.  相似文献   

14.
A novel method for peptide cyclization in solution: the azo cyclization is presented herein. Ring closure by forming an azo bridge was achieved in situ by connecting the corresponding side chains of para amino phenylalanine (Pap) residues to those of tyrosine or histidine residues present in the corresponding linear precursors. The reaction was performed using an initial diazotization step in acidic media followed by intramolecular azo cyclization in a mild basic media. This new method of cyclization is facile, applicable to various sequences and results in a high yield of pure products and hence is suggested as an additional method for peptide cyclization. Here we report the successful utilization of this method for the synthesis of 10 new cyclic azo peptides, derived from RGD, GnRH, Tuftsin, VIP and SV40 NLS.  相似文献   

15.
The temperature dependence of the internal dynamics of recombinant human ubiquitin has been measured using solution NMR relaxation techniques. Nitrogen-15 relaxation has been employed to obtain a measure of the amplitude of subnanosecond motion at amide N-H sites in the protein. Deuterium relaxation has been used to obtain a measure of the amplitude of motion of methyl-groups in amino-acid side chains. Data was obtained between 5 and 55 degrees C. The majority of amide N-H and methyl groups show a roughly linear (R(2)>0.75) temperature dependence of the associated Lipari-Szabo model-free squared generalized-order parameter (O(2)) describing the amplitude of motion. Interestingly, for those sites showing a linear response, the temperature dependence of the backbone is distinct from that of the methyl-bearing side chains with the former being characterized by a significantly larger Lambda-value, where Lambda is defined as d ln(1 - O)/d lnT. These results are comparable to the sole previous such study of the temperature dependence of protein motion obtained for a calmodulin-peptide complex. This suggests that the distinction between the main chain and methyl-bearing side chains may be general. Insight into the temperature dependence is gathered from a simple two-state step potential model.  相似文献   

16.
Static and dynamic light scattering, viscosity, and optical rotation measurements have been made at eight different temperatures between 25 and 75 degrees C on two succinoglycan samples (sodium salt) with weight-average molecular weights M(w) of 7.14 x 10(5) and 3.54 x 10(5) (at 25 degrees C) in 0.01 M aqueous NaCl to investigate the thermally induced order-disorder conformation change of the polysaccharide. Additionally, viscometry and polarimetry have been performed for a sodium salt sample (M(w) = 4.55 x 10(5) at 25 degrees C) whose M(w), z-average radius of gyration (z)(1/2), and hydrodynamic radius R(H) in the aqueous salt had been determined previously. As the temperature increases, M(w), (z)(1/2), R(H), and the intrinsic viscosity for every sample sharply decrease around 55 degrees C where the specific rotation at 300 nm sigmoidally increases. In particular, M(w) at 25 degrees C (i.e., in the ordered helical state) is twice as large as that at 75 degrees C (i.e., in the disordered state). These findings substantiate that the ordered structure is composed of two chains and hence is a double helix. Data analysis shows that this helix at 25 degrees C is characterized by an unperturbed wormlike chain with a helix pitch of about 2 nm (per repeating unit) and a persistence length of about 50 nm and that upon heating, it dissociates directly (i.e., in all-or-none fashion) to disordered chains of a similar contour length but with a much smaller persistence length of about 10 nm. The temperature dependence of the light scattering second viral coefficient is discussed in relation to the association of disordered chains in the cooling process.  相似文献   

17.
Affinity precipitation, especially secondary effect affinity precipitation, has repeatedly been suggested as a valuable technique for the biotechnical downstream process. The present lack of applications is related to the scarcity of predictable affinity macroligands and to the fact that rather high affinity constants are required in affinity precipitation (K(D) < 10(-10)). The latter are rarely found in nature, at least in the case of small affinity ligands (affinity tags), and are usually difficult to handle (complex dissociation) once one has found them. In this article we describe a new type of thermoresponsive affinity macroligand. The base polymer (poly-N-isopropylacrylamide, or PNIPAAm) is produced by chain transfer polymerization. As a consequence, the structure, as well as the solubility behavior, is very homogeneous (polydispersity < 1.2), whereas the average molecular mass is small (<5000 g/mol). In pure water, the base polymer shows sharp thermoprecipitation at 32.2 degrees C. Each oligomer carries a single amino end group, which allows easy and defined coupling of the affinity ligand, while preserving the ligand's activity to the highest possible degree. Herein, the oligomer was coupled to iminobiotin. The ensuing affinity macroligand has a high affinity to avidin (and avidin-tagged molecules) at elevated pH (<10), but releases the avidin easily at lower pH (approximately 4). The affinity macroligands were used to purify avidin from solutions containing large amounts of lysozyme as well as from cell culture supernatants containing 5% fetal calf serum. In both cases, pure avidin was recovered (residual protein contamination below the detection limit), with yields of >90%.  相似文献   

18.
Kinetic intermediates in protein folding are short-lived and therefore difficult to detect and to characterize. In the folding of polypeptide chains with incorrect isomers of Xaa-Pro peptide bonds the final rate-limiting transition to the native state is slow, since it is coupled to prolyl isomerization. Incorrect prolyl isomers thus act as effective traps for folding intermediates and allow their properties to be studied more easily. We employed this strategy to investigate the mechanism of slow folding of ribonuclease T1. In our experiments we use a mutant form of this protein with a single cis peptide bond at proline 39. During refolding, protein chains with an incorrect trans proline 39 can rapidly form extensive secondary structure. The CD signal in the amide region is regained within the dead-time of stopped-flow mixing (15 ms), indicating a fast formation of the single alpha-helix of ribonuclease T1. This step is correlated with partial formation of a hydrophobic core, because the fluorescence emission maximum of tryptophan 59 is shifted from 349 nm to 325 nm within less than a second. After about 20 s of refolding an intermediate is present that shows about 40% enzymatic activity compared to the completely refolded protein. In addition, the solvent accessibility of tryptophan 59 is drastically reduced in this intermediate and comparable to that of the native state as determined by acrylamide quenching of the tryptophan fluorescence. Activity and quenching measurements have long dead-times and therefore we do not know whether enzymatic activity and solvent accessibility also change in the time range of milliseconds. At this stage of folding at least part of the beta-sheet structure is already present, since it hosts the active site of the enzyme. The trans to cis isomerization of the tyrosine 38-proline 39 peptide bond in the intermediate and consequently the formation of native protein is very slow (tau = 6,500 s at pH 5.0 and 10 degrees C). It is accompanied by an additional increase in tryptophan fluorescence, by the development of the fine structure of the tryptophan emission spectrum, and by the regain of the full enzymatic activity. This indicates that the packing of the hydrophobic core, which involves both tryptophan 59 and proline 39, is optimized in this step. Apparently, refolding polypeptide chains with an incorrect prolyl isomer can very rapidly form partially folded intermediates with native-like properties.  相似文献   

19.
M J Swamy  D Marsh 《Biochemistry》2001,40(49):14869-14877
The interaction of avidin with aqueous dispersions of N-biotinylphosphatidylethanolamines, of acyl chain lengths C(14:0), C(16:0), and C(18:0), was studied by using spin-label electron spin resonance (ESR) spectroscopy, (31)P nuclear magnetic resonance ((31)P NMR) spectroscopy, differential scanning calorimetry, and chemical binding assays. In neutral buffer containing 1 M NaCl, binding of avidin is due to specific interaction with the biotinyl lipid headgroup because avidin presaturated with biotin does not bind. Saturation binding of the protein corresponds to a ratio of 50 lipid molecules per tetrameric avidin. Phospholipid probes spin-labeled at various positions between C-4 and C-14 in the sn-2 chain were used to characterize the effects of avidin binding on the lipid chain dynamics. In the fluid phase, protein binding results in a decrease of chain mobility at all positions of labeling while the flexibility gradient characteristic of a liquid-crystalline lipid phase is maintained. There is no evidence from the spin-label ESR spectra for penetration of the protein into the hydrophobic interior of the membrane. At temperatures corresponding to the gel phase, the lipid chain mobility increases on binding protein. The near constancy in mobility found with chain position, however, suggests that in the gel phase the lipid chains remain interdigitated upon binding avidin. Binding of increasing amounts of avidin results in a gradual decrease of the lipid chain-melting transition enthalpy with only small change in the transition temperature. At saturation binding, the calorimetric enthalpy is reduced to zero. (31)P NMR spectroscopy indicates that protein binding increases the surface curvature of dispersions of all three biotin lipids. The C(14:0) biotin lipid yields isotropic (31)P NMR spectra in the presence of avidin at all temperatures between 10 and 70 degrees C, in contrast to dispersions of the lipid alone, which give lamellar spectra at low temperature that become isotropic at the chain-melting temperature. In the presence of avidin, the C(16:0) and C(18:0) biotin lipids yield primarily lamellar (31)P NMR spectra at low temperature with a small isotropic component; the intensity of the isotropic component increases with temperature, and the spectra narrow and become totally isotropic at high temperature, in contrast to dispersions of the lipids alone, which give lamellar spectra in the fluid phase. The binding of avidin therefore reduces the cooperativity of the biotin lipid packing, regulates the mobility of the lipid chains, and enhances the surface curvature of the lipid aggregates. These effects may be important for both lateral and transbilayer communication in the membrane.  相似文献   

20.
A critical step in the folding pathway of globular proteins is the formation of a tightly packed hydrophobic core. Several mutational studies have addressed the question of whether tight packing interactions are present during the rate-limiting step of folding. In some of these investigations, substituted side chains have been assumed to form native-like interactions in the transition state when the folding rates of mutant proteins correlate with their native-state stabilities. Alternatively, it has been argued that side chains participate in nonspecific hydrophobic collapse when the folding rates of mutant proteins correlate with side-chain hydrophobicity. In a reanalysis of published data, we have found that folding rates often correlate similarly well, or poorly, with both native-state stability and side-chain hydrophobicity, and it is therefore not possible to select an appropriate transition state model based on these one-parameter correlations. We show that this ambiguity can be resolved using a two-parameter model in which side chain burial and the formation of all other native-like interactions can occur asynchronously. Notably, the model agrees well with experimental data, even for positions where the one-parameter correlations are poor. We find that many side chains experience a previously unrecognized type of transition state environment in which specific, native-like interactions are formed, but hydrophobic burial dominates. Implications of these results to the design and analysis of protein folding studies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号