共查询到20条相似文献,搜索用时 0 毫秒
1.
Biomethanation of low pH petrochemical wastewater using up-flow fixed-film anaerobic bioreactors 总被引:4,自引:0,他引:4
Anaerobic digestion of wastewater from a petrochemical plant, manufacturing Nylon-6 was studied in continuously fed up-flow fixed-film column reactors using different biomass support materials such as bonechar, charcoal, bricks, plastic beads and polyurethane foam under varying hydraulic and organic loading rates. Experimental results showed bonechar as the best support material with high biomass-retaining capacity because of its high specific surface area (53.35m2g–1 of bedding material) and pore specific volume (0.244cm3g–1 of bedding material). This system could treat waste water at hydraulic retention times (HRT) as low as 2.5 days with organic loading rates as high as 21.76kg COD m–3 day–1 using acidic feed of pH 2.5 resulting in a 95% COD reduction with biogas production of 11.76m3 m–3 of reactor volume day–1. Total alkalinity of 1700mg CaCO3 l–1 and pH of 7.5 of the treated wastewater were observed at 2.5 days HRT, indicating that methanogenesis appear to be alkalizing step and wastewater with pH as low as 2.5 can be treated as such without neutralization with retention of methanogenic biomass on bonechar. 相似文献
2.
Summary An UASB reactor was used for the anaerobic conversion of an acidic petrochemical effluent into a methane-rich biogas. Reactor efficiency was optimal at an HRT of 1.78 days and loading rate of 7.255 kg COD/m3.d, A COD reduction of 83% was obtained. The gas production was 2.64 m/m .d (STP) and contained more than 90% CH4. A further increase in the loading rate resulted in a drastic decrease in the reactor effectivity. 相似文献
3.
Biotreatment of acidic zinc- and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor 总被引:2,自引:0,他引:2
The treatment of acidic (pH 6.5–3), sulfate- (2–3 g/L), Zn- and Cu- (total metal 0–500 mg/L) containing wastewater was studied
in a four-stage anaerobic baffled reactor (ABR) at 35 °C for 250 days. Ethanol was supplemented (COD/SO4
2− = 0.67) as carbon and electron source for sulfate reducing bacteria. Sulfate reduction, COD oxidation and metal precipitation
efficiencies were 70–92, 80–94 and >99%, respectively. The alkalinity produced from sulfidogenic ethanol oxidation increased
the wastewater pH from 3.0 to 7.0–8.0. The electron flow from organic oxidation to sulfate averaged 87%. Decreasing feed pH
to 3 and increasing total metal concentrations to 500 mg/L did not adversely affect the performance of ABR and sufficient
alkalinity was produced to increase the effluent pH to neutral values. More than 99% of metals were precipitated in the form
of metal-sulfides. Accumulation of precipitated metals in the first compartment allowed metal recovery without disturbing
reactor performance seriously. 相似文献
4.
Nuri Azbar Fatih Tutuk Tugba Keskin 《International biodeterioration & biodegradation》2009,63(6):690-698
The primary objective of this study was to evaluate the performance of a 20 l lab scale anaerobic hybrid reactor (AHR) combining sludge blanket in the lower part and filter in the upper part under varying organic loading rates (OLRs) in order to study biodegradation of olive mill effluent (OME). For this purpose, some parameters, such as total phenols, effluent chemical oxygen demand (COD), suspended solids (SS), volatile fatty acids (VFAs), and pH in the influent and effluent, and removal efficiencies for those parameters (except pH) were continuously monitored throughout the experimental period of 477 days. Eleven different organic loadings between 0.45 and 32 kg COD m−3 day−1 were imposed by either varying influent COD or hydraulic retention time (HRT). The results demonstrated that the AHR reactor could tolerate high influent COD concentrations. Removal efficiencies for the studied pollution parameters were found to be as follows: COD, 50–94%; total phenol, 39–80%; color, 0–54%; and suspended solids, 19–87%. The levels of VFAs in the effluent, which was principally acetate, butyrate, iso-butyrate, and propionate, varied between 10 and 2005 mg l−1 depending upon OLRs. A COD removal efficiency of 90% could be achieved as long as OLR is kept at a level of less than 10 kg COD m−3 day−1. However, a secondary treatment unit for polishing purposes is necessary to comply with receiving media discharge standards. 相似文献
5.
Rodríguez-Martínez J Rodríguez-Garza I Pedraza-Flores E Balagurusamy N Sosa-Santillan G Garza-García Y 《Bioresource technology》2002,85(3):235-241
The kinetics of anaerobic treatment of slaughterhouse wastewater in batch and upflow anaerobic sludge blanket (UASB) reactors was investigated. Different concentrations of organic matter in slaughterhouse wastewater did not change the first order kinetics of the reaction. In batch digesters, methane and nitrogen production stopped after 30-40, 20-30 h, respectively, and in UASB reactors it was terminated after 30-40 days. The constant of velocity was 3.93 and 0.23 h(-1) respectively, for methane and nitrogen production. The yield coefficient, Yp was 343 and 349 ml CH4 per g of chemical oxygen demand at standard temperature and pressure conditions for batch reactors and UASB reactor, respectively. 相似文献
6.
High upflow velocity and organic loading rate improve granulation in upflow anaerobic sludge blanket reactors 总被引:2,自引:0,他引:2
Francese A. Córdoba P. Durán J. Siñeriz F. 《World journal of microbiology & biotechnology》1998,14(3):337-341
Five laboratory scale upflow anaerobic sludge blanket (UASB) reactors were seeded with nongranular sewage sludge. Granulation was obtained after 15–35 days when between 0.5 and 2.0m/h upflow liquid velocity was applied, with an organic loading rate (OLR) of 8g COD/l.d (COD is the chemical oxygen demand). Granules had different physical characteristics and specific activity (g CODREMOVED/g volatile suspended solids) depending on the upflow liquid velocity applied. Granules were obtained in short startup periods (5 and 14 days) when a pilot-scale (180l) UASB reactor with a height of 4.7m was used to study hydraulic effects on the granulation process. 相似文献
7.
N. Christiansen S. R. Christensen E. Arvin B. K. Ahring 《Applied microbiology and biotechnology》1997,47(1):91-94
Reductive dechlorination of tetrachloroethene was studied in a mesophilic upflow anaerobic sludge blanket reactor. Operating
the reactor in batch mode the dynamic transformation of tetrachloroethene, trichloroethene and dichloroethene (DCE) was monitored.
Tetrachloroethene was reductively dechlorinated to trichloroethene, which again was dechlorinated at the same rate as DCE
was produced. DCE showed a lag period of 40 h before transformation was observed. During normal reactor operation trans-1,2-DCE was the major DCE isomer, followed by cis-1,2-DCE. Small amounts of 1,1-DCE but no vinyl chloride were detected. When the influent tetrachloroethene concentration
was increased from 4.6 μM to 27 μM, the transformation rate increased, indicating that the system was not saturated with tetrachloroethene.
The main organic component in the effluent was acetate, indicating that the aceticlastic methane-producing bacteria were inhibited
by the chlorinated ethenes.
Received: 29 July 1996 / Received revision: 13 September 1996 / Accepted: 13 September 1996 相似文献
8.
Anaerobic dechlorination of pentachlorophenol in fixed-film and upflow anaerobic sludge blanket reactors using different inocula 总被引:1,自引:0,他引:1
Longterm performance and stability of two upflow anaerobic sludge blanket (UASB) reactors inoculated with granular sludge and treating a synthetic waste water containing pentachlorophenol (PCP) and phenol were studied. A similar system consisting of two fixed-film reactors inoculated with anaerobic digested sewage sludge were further studied. One reactor in each series received glucose in addition to the phenols. Dechlorination of PCP proceeded via two different dominating pathways in the respective reactor systems, suggesting that two distinct microbial populations were present, probably originating from the different inocula. Dechlorinating activity was maintained for more than 18 months in the UASB reactors and was generally higher than in the fixed-film reactors. In the fixed-film reactors, dechlorination of PCP suddenly decreased after 15.5 months of operation compared to earlier performance. Since no operational parameters had been changed, this indicated that the enriched culture was unstable on a longterm basis. Addition of yeast extract to the medium restored activity. General process stability in both reactor systems was clearly enhanced by the addition of glucose and was superior in the UASB/granular sludge system. The better performance and the higher stability in the UASB/granular sludge reactor highlights the importance of thorough screening of inocular prior to start-up of processes treating waste waters containing xenobiotic compounds.Abbreviations PCP
pentachlorophenol
- TeCP
tetrachlorophenol
- TCP
trichlorophenol
- DCP
dichlorophenol
- UASB
upflow anaerobic sludge blanket
- HRT
hydraulic retention time 相似文献
9.
《Journal of Fermentation and Bioengineering》1995,79(4):398-399
Performance of anaerobic upflow fixed film reactors for biomethanation of high-strength cheese whey using different support material such as charcoal, gravel, brick pieces, PVC pieces and pumice stones at 37°C has been studied. Among them the charcoal fixed film reactor showed the best performance when operated at 2 d hydraulic retention times (HRT), achieving maximum COD removal of 81% (COD influent=70 g/l) and improved total gas production (6.7 l/d/l digester) with high methane content (72%). 相似文献
10.
Performance and granulation in an upflow anaerobic sludge blanket (UASB) reactor treating saline sulfate wastewater 总被引:1,自引:0,他引:1
An upflow anaerobic sludge blanket reactor was employed to treat saline sulfate wastewater. Mesophilic operation (35 ± 0.5 °C) was performed with hydraulic retention time fixed at 16 h. When the salinity was 28 g L?1, the chemical oxygen demand and sulfate removal efficiencies were 52 and 67 %, respectively. The salinity effect on sulfate removal was less than that on organics removal. The methane productions were 887 and 329 cm3 L?1 corresponding to the NaCl concentrations of 12 and 28 g L?1, respectively. High salinity could stimulate microbes to produce more extracellular polymeric substances (EPSs) and granulation could be performed better. Besides, with the high saline surroundings, a great deal of Na+ compressed the colloidal electrical double-layer, neutralized the negative charge of the sludge particles and decreased their electrostatic repulsion. The repulsion barrier disappeared and coagulation took place. The maximum size of granules was 5 mm, which resulted from the coupled triggering forces of high EPSs and Na+ contents. Sulfate-reducing bacteria (SRB) were dominant in the high saline surroundings while the methane-producing archaea dominated in the low saline surroundings. The SRB were affected least by the salinity. 相似文献
11.
A two-stage upflow packed-bed (reactors in series) system was used for the treatment of dairy wastewater. Nylon pads were used as supporting media for the biomass. This investigation aimed at the determination of various kinetic constants for substrate, biomass and biogas based on various models. The maximum loadings that could be applied to reactor I and reactor II were 14·29 and 5·0 kg of chemical oxygen demand (COD) per m3 per day, respectively. The maximum COD removal efficiencies at various loading rates were in the ranges of 93·8–98·5% and 72·5–84% for the two reactor systems, respectively. The combined biogas yield was between 0·196 and 0·386 m3 gas/kg CODa. 相似文献
12.
Treatment of catechol bearing wastewater in an upflow anaerobic sludge blanket (UASB) reactor: sludge characteristics 总被引:1,自引:0,他引:1
This paper deals with the characteristics of anaerobic microbial granules grown in an UASB reactor treating catechol bearing synthetic wastewater (SWW). The specific methanogenic activity of the sludge showed an increase in trend with an increase in the organic loading rate and the catechol concentration in the SWW. The settling velocity of individual granules in the size range of 0.5-2.5mm was found to be in the range of 30-75mh(-1). The ash content in the sludge was 11.7% with a sludge volume index of 18-20mlg(-1). The inorganic elemental distribution within the granules showed a decrease except that for phosphorous and cobalt, which increased by approximately 12% and 18%, respectively, after the treatment of SWW. Scanning electron microscopy (SEM) coupled with electron disperse X-ray analysis showed an increase in the sulphur content by approximately 300% after the treatment of SWW. Surface mineral composition of the granules determined by XRD analysis indicated the existence of vuagnatite (CaAlSiO(4)(OH)). SEM observation of the granules showed the predominance of Methanosaeta and Methanobacterium type of species on the surface along with a variety of other species. 相似文献
13.
Influences of hydraulic retention time (HRT) on dechlorination of tetrachloroethene (PCE) were investigated in an upflow anaerobic sludge blanket (UASB) reactor inoculated with anaerobic granular sludge non-pre-exposed to chlorinated compounds. PCE was introduced into the reactor at a loading rate of 3 mg/l d. PCE removal increased from 51 +/- 5% to 87 +/- 3% when HRT increased from 1 to 4 d, corresponding to an increase in the PCE biotransformation rate from 10.5 +/- 2.3 to 21.3 +/- 3.7 mumol/d. A higher ethene production rate, 0.9 +/- 0.2 mumol/d, was attained without accumulation of dichloroethenes at the HRT of 4 d. Dehalococcoides-like species were detected in sludge granules by fluorescence in situ hybridization, with signal strength in proportion to the extent of PCE dechlorination. 相似文献
14.
Summary A stepped-loading start-up regime utilising variable organic influent concentrations in the range 1650–11600 mgCOD1–1 was applied to an anaerobic fluidised bed bioreactor at 37°C. The reactor was sensitive to variable influent COD concentrations, but the stepped-loading aided rapid recovery from transient organic loading shocks. Variable effluent COD levels were produced but a COD removal efficiency of 76% was obtained at a final HRT of 0.5 d and an organic loading rate of 5.3 kg COD m–3 d–1. 相似文献
15.
The anaerobic digestion of wood ethanol stillage in a UASB reactor was studied. At organic loading rates be low 16 kg COD/m(3) day the reactor performed effectively, achieving soluble COD and BOD removals in excess of 86 and 93%, respectively. Removal of color averaged 40%. At a loading rate of 16 kg COD/m(3) day the methane yield was 0.302 L CH(4) (STP)/g COD removed, and the observed cell yield was 0.112 g VSS/g COD removed. Operation of the reactor at higher loading rates was unsuccessful. Nitrogen, phosphorus, and alkalinity were supplemented. No additions of the essential trace elements Fe, Co, and Ni were required. 相似文献
16.
Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor 总被引:2,自引:0,他引:2
The co-digestion of onion juice and aerobic wastewater sludge produced from an onion processor using an anaerobic mixed biofilm reactor (AMBR) was investigated for biogas energy production potential and waste treatment. Two experiments were conducted to study the performance of an AMBR at different organic loading rates (OLRs) using different mixtures of onion juice and aerobic sludge. In the first experiment, the OLR was increased from 1.24 to 4.37 gVS/L/d by increasing the amount of onion juice in the feed mixture while maintaining a constant amount of aerobic sludge. When the OLR reached 4.37 gVS/L/d, the AMBR failed as indicated by decreased biogas production and pH. Increase of carbon to nitrogen ratio (C/N) from 13.7 to 20.3 and lack of proper alkalinity were suspected to be the causes for the failure. In the second experiment, the C/N of the feed mixture was maintained at about 15 while the OLR was increased from 1.40 to 3.60 gVS/L/d. The digester showed stable performance. The average biogas and methane yields of the two experiments were 0.62 +/- 0.05 L/gVS and 0.37 +/- 0.08 L/gVS, respectively. It was concluded that the C/N of about 15 was recommended for treating the mixture of onion juice and aerobic sludge. 相似文献
17.
Anaerobic dechlorination of technical grade hexachlorocyclohexane (THCH) was studied in a continuous upflow anaerobic sludge blanket (UASB) reactor with methanol as a supplementary substrate and electron donor. A reactor without methanol served as the experimental control. The inlet feed concentration of THCH in both the experimental and the control UASB reactor was 100 mg l(-1). After 60 days of continuous operation, the removal of THCH was >99% in the methanol-supplemented reactor as compared to 20-35% in the control reactor. THCH was completely dechlorinated in the methanol fed reactor at 48 h HRT after 2 months of continuous operation. This period was also accompanied by increase in biomass in the reactor, which was not observed in the experimental control. Batch studies using other supplementary substrates as well as electron donors namely acetate, butyrate, formate and ethanol showed lower % dechlorination (<85%) and dechlorination rates (<3 mg g(-1)d(-1)) as compared to methanol (98%, 5 mg g(-1)d(-1)). The optimum concentration of methanol required, for stable dechlorination of THCH (100 mg l(-1)) in the UASB reactor, was found to be 500 mg l(-1). Results indicate that addition of methanol as electron donor enhances dechlorination of THCH at high inlet concentration, and is also required for stable UASB reactor performance. 相似文献
18.
Production of vitamin B12 in an upflow anaerobic filter continuous reactor using Acetobacterium sp. 总被引:2,自引:0,他引:2
Alberto Emilio Bainotti Belén Estebanez Hisashi Nagadomi Naomichi Nishio 《Biotechnology letters》2000,22(6):503-508
The accumulation of biofilm by Acetobacterium sp. during continuous culture in an upflow anaerobic filter (UAF) growing on methanol-formate was the result of space velocity and inlet concentrations of substrate and Co+2. To achieve good development of biofilm, a space velocity of 0.38 h–1, inlet substrate concentrations of 125 mM of both methanol and formate, and Co+2 at 0.16 mM were required. Cell productivities in the effluent of the UAF-reactor were about 6-fold higher than in chemostat cultures (0.20 g l–1 h–1 for UAF and 0.035 g l–1 h–1 for chemostat) (previous studies), and the maximum vitamin B12 specific concentration was 5.1 mg g cell–1. 相似文献
19.
A study of anaerobic digestion of piggery wastewater was carried out in a laboratory-scale sludge bed reactor as a secondary treatment. The effect of organic volumetric loading rates (BV) in the range of 1.0-8.1 g TCOD/ld on the process performance was evaluated. The best results were obtained at BV equal to or lower than 4 g TCOD/ld. At higher BV values, the removal efficiency of the process decreased suddenly. A linear relationship was found between the effluent SCOD and the TVFA/alkalinity ratio (P). A relationship was found among the different operational variables (BV , removal efficiency, effluent soluble COD, soluble COD removal rate (R), retention factor (phi), specific microbial growth rate (mu), methane production rate per volume of reactor and per volume of waste treated--QM and qM, respectively) and the corresponding regression equations were obtained. An increase of BV determined a decrease of removal efficiency, phi and qM and an increase of effluent soluble COD, mu, R and QM. The value of the maximum specific microbial growth rate (muM) determined through the equation that correlated BV and mu was found to be 0.19 d(-1). This value was of the same magnitude as those reported in other works of anaerobic digestion of piggery waste. 相似文献
20.
The effects of four aeration and four organic loading (OLR) rates on trichloroethylene (TCE) degradation in methanogenic-methanotrophic coupled reactors were studied using ethanol as the carbon source for the methanogens. Microcosm and PCR studies demonstrated that methanotrophs capable of mineralizing TCE and methanogens were present in the biomass throughout the study. The gene for the particulate form of methane monooxygenase (pMMO) was detected by PCR, but not that for the soluble form (sMMO). TCE mineralization by methanotrophs was therefore due primarily to pMMO activity. Low TCE concentrations were measured in effluent and off-gas samples in all cases. Volatilization losses were 0-5%. Dichloroethylene (DCE) was also observed, but vinyl chloride and ethylene were never detected. Changes in the aeration rate had no effect on TCE removal, but did influence DCE degradation. Reductive dechlorination of TCE to DCE was favored at low and no-aeration conditions, and DCE accumulation occurred due to slow DCE degradation. Low DCE levels were observed at the higher aeration rates, which indicated that conditions in these reactors were amenable to the aerobic co-metabolism of TCE and DCE. The OLR did have an effect on TCE removal. TCE and DCE removal were negatively affected when the OLR was increased. An OLR of 0.3 g COD l(rx)(-1)day(-1) or lower with an aeration rate of 3 l(O2 )l(rx)(-1)day(-1) and higher is the recommended operating condition of a coupled reactor for removal of TCE. 相似文献