共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of dioxygen by heme oxygenase proceeds via formation of an obligatory ferric hydroperoxide intermediate (FeIII-OOH), as is the case in the activation of dioxygen by monooxygenase enzymes. This review summarizes current understanding of the structural and dynamic properties in heme oxygenase that channel the reactivity of the FeIII-OOH intermediate toward heme hydroxylation rather than oxoferryl formation. In addition, structural and electronic factors dictating the regiospecificity of heme oxygenation are analyzed in the context of recent X-ray and NMR spectroscopic studies. Differences in mechanism between heme hydroxylation, as carried out by heme oxygenase, and the coupled oxidation process, are also addressed. 相似文献
2.
3.
Heme oxygenase and heme degradation 总被引:5,自引:0,他引:5
Kikuchi G Yoshida T Noguchi M 《Biochemical and biophysical research communications》2005,338(1):558-567
The microsomal heme oxygenase system consists of heme oxygenase (HO) and NADPH-cytochrome P450 reductase, and plays a key role in the physiological catabolism of heme which yields biliverdin, carbon monoxide, and iron as the final products. Heme degradation proceeds essentially as a series of autocatalytic oxidation reactions involving heme bound to HO. Large amounts of HO proteins from human and rat can now be prepared in truncated soluble form, and the crystal structures of some HO proteins have been determined. These advances have greatly facilitated the understanding of the mechanisms of individual steps of the HO reaction. HO can be induced in animals by the administration of heme or several other substances; the induction is shown to involve Bach1, a translational repressor. The induced HO is assumed to have cytoprotective effects. An uninducible HO isozyme, HO-2, has been identified, so the authentic HO is now called HO-1. HOs are also widely distributed in invertebrates, higher plants, algae, and bacteria, and function in various ways according to the needs of individual species. 相似文献
4.
Friend virus transformed murine erythroleukemia (MEL) cells are known to take up heme from the surrounding medium and to incorporate it into newly synthesized hemoglobin (Granick, J. L., and Sassa, S. (1978) J. Biol. Chem. 253, 5402-5406), but the mechanism of its uptake is unknown. We hypothesized the existence of a specific receptor for heme in the plasma membrane. Using [55Fe]heme, we examined the characteristics of its interaction with MEL cells at 4 degrees C. [55Fe]heme binding reached equilibrium within 4 h, was 80% dissociable by 16 h, and was independent of pH over the range 7.0-8.2. Specific heme binding was linear with cell number, and competitive binding studies with various heme analogues, such as free protoporphyrin IX, metal-substituted protoporphyrin IX, Fe-mesoporphyrin IX, and Fe-deuteroporphyrin IX, revealed significant stereospecificity for Fe-protoporphyrin IX. The dissociation constant of the interaction was 0.03 nM-1 with no evidence of cooperativity or multiple classes of sites. The average number of sites/cell was approximately 10,300. Reduction of binding following preincubation with trypsin, in conjunction with the above data, suggests that this cell type may display a receptor for heme which is comprised, as least in part, of protein. 相似文献
5.
Anwar A. KhanJohn G. Quigley 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(5):668-682
Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. 相似文献
6.
G C Chu K Katakura X Zhang T Yoshida M Ikeda-Saito 《The Journal of biological chemistry》1999,274(30):21319-21325
Hmu O, a heme degradation enzyme in the pathogen Corynebacterium diphtheriae, catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. A bacterial expression system using a synthetic gene coding for the 215-amino acid, full-length Hmu O has been constructed. Expressed at very high levels in Escherichia coli BL21, the enzyme binds hemin stoichiometrically to form a hexacoordinate high spin hemin-Hmu O complex. When ascorbic acid is used as the electron donor, Hmu O converts hemin to biliverdin with alpha-hydroxyhemin and verdoheme as intermediates. The overall conversion rate to biliverdin is approximately 4-fold slower than that by rat heme oxygenase (HO) isoform 1. Reaction of the hemin-Hmu O complex with hydrogen peroxide yields a verdoheme species, the recovery of which is much less compared with rat HO-1. Reaction of the hemin complex with meta-chloroperbenzoic acid generates a ferryl oxo species. Thus, the catalytic intermediate species and the nature of the active form in the first oxygenation step of Hmu O appear to be similar to those of the mammalian HO. However, the considerably slow catalytic rate and low level of verdoheme recovery in the hydrogen peroxide reaction suggest that the active-site structure of Hmu O is different from that of its mammalian counterpart. 相似文献
7.
Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation 下载免费PDF全文
Davis DA Brown CA Newcomb FM Boja ES Fales HM Kaufman J Stahl SJ Wingfield P Yarchoan R 《Journal of virology》2003,77(5):3319-3325
Human immunodeficiency virus protease activity can be regulated by reversible oxidation of a sulfur-containing amino acid at the dimer interface. We show here that oxidation of this amino acid in human immunodeficiency virus type 1 protease prevents dimer formation. Moreover, we show that human T-cell leukemia virus type 1 protease can be similarly regulated through reversible glutathionylation of its two conserved cysteine residues. Based on the known three-dimensional structures and multiple sequence alignments of retroviral proteases, it is predicted that the majority of retroviral proteases have sulfur-containing amino acids at the dimer interface. The regulation of protease activity by the modification of a sulfur-containing amino acid at the dimer interface may be a conserved mechanism among the majority of retroviruses. 相似文献
8.
The ligand binding properties and resistances to denaturation of >300 different site-directed mutants of sperm whale, pig, and human myoglobin have been examined over the past 15 years. This library of recombinant proteins has been used to derive chemical mechanisms for ligand binding and to examine the factors governing holo- and apoglobin stability. We have also examined the effects of mutagenesis on the dioxygenation of NO by MbO(2) to form NO(3)(-) and metMb. This reaction rapidly detoxifies NO and is a key physiological function of both myoglobins and hemoglobins. The mechanisms derived for O(2) binding and NO dioxygenation have been used to design safer, more efficient, and more stable heme protein-prototypes for use as O(2) delivery pharmaceuticals in transfusion therapy (i.e. blood substitutes). An interactive database is being developed (http://olsonnt1.bioc.rice.edu/web/myoglobinhome.asp) to allow rapid access to the ligand binding parameters, stability properties, and crystal structures of the entire set of recombinant myoglobins. The long-range goal is to use this library for developing general protein engineering principles and for designing individual heme proteins for specific pharmacological and industrial uses. 相似文献
9.
Mingone CJ Ahmad M Gupte SA Chow JL Wolin MS 《American journal of physiology. Heart and circulatory physiology》2008,294(3):H1244-H1250
This study examines in endothelium-denuded bovine pulmonary arteries the effects of increasing heme oxygenase-1 (HO-1) activity on relaxation and soluble guanylate cyclase (sGC) activation by nitric oxide (NO). A 24-h organ culture with 0.1 mM cobalt chloride (CoCl2) or 30 microM Co-protoporphyrin IX was developed as a method of increasing HO-1 expression. These treatments increased HO-1 expression and HO activity by approximately two- to fourfold and lowered heme levels by 40-45%. Induction of HO-1 was associated with an attenuation of pulmonary arterial relaxation to the NO-donor spermine-NONOate. The presence of a HO-1 inhibitor 30 microM chromium mesoporphyrin during the 24-h organ culture (but not acute treatment with this agent) reversed the attenuation of relaxation to NO seen in arteries co-cultured with agents that increased HO-1. Relaxation to isoproterenol, which is thought to be mediated through cAMP, was not altered in arteries with increased HO-1. Inducers of HO-1 did not appear to alter basal sGC activity in arterial homogenates or expression of the beta(1)-subunit of sGC. However, the increase in activity seen in the presence of 1 microM spermine-NONOate was attenuated in homogenates obtained from arteries with increased HO-1. Since arteries with increased HO-1 had decreased levels of superoxide detected by the chemiluminescence of 5 microM lucigenin, superoxide did not appear to be mediating the attenuation of relaxation to NO. These data suggest that increasing HO-1 activity depletes heme, and this is associated with an attenuation of pulmonary artery relaxation and sGC activation responses to NO. 相似文献
10.
In this study, we present a model compound for antiparallel beta-sheet-DNA interaction. Tachyplesin I, cationic antimicrobial peptide, interacts through contacts with the minor groove. Secondary structure of tachyplesin I, antiparallel beta-sheet constrained by two disulfide bridges and connected by beta-turn, contributes significantly to its DNA binding. The present results give valuable information for design of sequence-specific DNA binding peptide based on antiparallel beta-sheet. 相似文献
11.
12.
Guanine-rich, single-stranded, DNAs and RNAs are able to fold to form G-quadruplexes that are held together by guanine base quartets. G-quadruplexes are known to bind ferric heme [Fe(III)-protoporphyrin IX] and to strongly activate such bound hemes toward peroxidase (1-electron oxidation) as well as oxygenase/peroxygenase (2-electron oxidation) activities. However, much remains unknown about how such activation is effected. Herein, we investigated whether G-quadruplexes were strictly required for heme activation or whether related multi-stranded DNA/RNA structures such as isoguanine (iG) quadruplexes and pentaplexes could also bind and activate heme. We found that iG-pentaplexes did indeed bind and activate heme comparably to G-quadruplexes; however, iG-quadruplexes did neither. Earlier structural and computational studies had suggested that while the geometry of backbone-unconstrained iG-quintets templated by cations such as Na+ or NH4+ was planar, that of iG-quartets deviated from planarity. We hypothesize that the binding as well as activation of heme by DNA or RNA is strongly supported by the planarity of the nucleobase quartet or quintet that interacts directly with the heme. 相似文献
13.
P Hallenbeck 《Biochemical and biophysical research communications》1978,85(1):234-241
Highly purified mouse liver plasma membranes have been used to define the properties of an NADH dehydrogenase activity associated with plasma membrane. The NADH indophenol reductase activity is two-fold stimulated at 5 × 10?8 M glucagon and the stimulation is inhibited by atebrin. Corresponding activity in endoplasmic reticulum is not stimulated by glucagon. The NADH indophenol reductase is 90% inhibited by insulin at 7 × 10?11M and shows a return to the original activity at higher insulin concentrations. NADH dehydrogenase activity in endoplasmic reticulum is inhibited up to 50% by insulin at a similar concentration. Triiodothyronine at 10?7M also inhibits the plasma membrane dehydrogenase whereas thyroxine has little effect. The response of this dehydrogenase to hormones suggests a role in regulation of cellular function. 相似文献
14.
15.
We have previously described a novel cancer chemotherapeutic approach based on the induction of apoptosis in targeted cells by homing pro-apoptotic peptides. In order to improve this approach we developed a computational method (approach for detecting potential apoptotic peptides, APAP) to detect short PAPs, based on the prediction of the helical content of peptides, the hydrophobic moment, and the isoelectric point. PAPs are toxic against bacteria and mitochondria, but not against mammalian cells when applied extracellularly. Among other peptides, substance P was identified as a PAP and subsequently demonstrated to be a pro-apoptotic peptide experimentally. APAP thus provides a method to detect and ultimately improve pro-apoptotic peptides for chemotherapy. 相似文献
16.
C F Polo E S Vazquez F Caballero E Gerez A M Battle 《Comparative biochemistry and physiology. B, Comparative biochemistry》1992,103(1):251-256
1. Heme regulation before the appearance of hyperplastic nodules was investigated in mice models of hepatocarcinogenesis. 2. With this aim 5-aminolaevulinate synthetase (ALA-S), microsomal heme-oxygenase (MHO), mitochondrial and cytoplasmic rhodanese activities were examined throughout a period of 35 days in animals exposed to dietary p-dimethylaminoazobenzene (DAB). 3. ALA-S activity was significantly diminished (50%) on day 14, then showing a sharply rising profile from day 28 onwards, and reaching 350% on day 35. 4. A similar profile was observed for mitochondrial rhodanese activity. 5. Changes in MHO and cytoplasmic rhodanese activities were almost the opposite to those observed for ALA-S. 6. The distinctive alteration in mitochondrial and cytoplasmic rhodanese would suggest that it plays a subtle role in ALA-S regulation during carcinogenesis initiation through a mechanism that appears to involve subcellular localization controls perhaps by means of the breakage of cystine trisulphide postulated to act as an ALA-S activator. 7. Taking into account the present results, we suggest a probable mechanism for the onset of hepatocarcinogenesis that includes a primary activating liver status, provoking biochemical aberration leading to the stage of initiation of hepatocarcinogenesis involving the whole organ. 相似文献
17.
Many animal-pathogenic bacteria can use heme compounds as iron sources. Like these microorganisms, rhizobium strains interact with host organisms where heme compounds are available. Results presented in this paper indicate that the use of hemoglobin as an iron source is not restricted to animal-pathogenic microorganisms. We also demonstrate that heme, hemoglobin, and leghemoglobin can act as iron sources under iron-depleted conditions for Rhizobium meliloti 242. Analysis of iron acquisition mutant strains indicates that siderophore-, heme-, hemoglobin-, and leghemoglobin-mediated iron transport systems expressed by R. meliloti 242 share at least one component. 相似文献
18.
In the absence of heme cofactor, the water-soluble domain of rat microsomal cytochrome b5 (cyt b5) contains a long flexible region within its 42-residue heme-binding loop. Heme capture induces this region to fold into a well-defined structure containing helices H3-H5, each separated by a turn, with His39 and His63 serving as axial ligands to the heme iron. We have shown that the H4 region of the apoprotein has the greatest tendency for disorder within the isolated binding loop. Here, the effect of the His63-iron bond and proximity of heme plane on the population of helical conformation in H4 and H5 was investigated by synthesis and characterization of a peptide-sandwiched mesoheme construct in which two H4-H5 peptides were covalently attached to a single cofactor. Spectroscopic data indicated that a holoprotein-like bis-histidine coordination state was achieved over a pH range from 7 to 9. Trifluoroethanol titrations of the construct and the analogous free peptide under these pH conditions revealed that heme proximity and iron ligation were insufficient to promote helix formation in H4 and H5. These observations were used to assess the role of disordered regions in heme capture and the loop-scaffold interface in holoprotein folding and stability. 相似文献
19.
A tryptic peptide of heme oxygenase obtained after solubilization of rat liver microsomes by mild trypsin treatment was purified. The purified peptide gave only a single protein band with a molecular mass of 28 kDa on SDS/PAGE. The tryptic peptide, like the native heme oxygenase, readily bound with substrate heme forming a hemeprotein transiently. The absorption spectra of the ferric, ferrous, ferrous-CO and ferrous-O2 forms of the resulting complex resembled those of the corresponding forms of the complex of heme and the native enzyme. Ferric heme bound to the tryptic peptide was quantitatively decomposed to biliverdin on incubation with a mixture of ascorbic acid and desferrioxamine, indicating that the tryptic peptide still retained catalytic activity. These observations suggest that heme oxygenase has two domains, a hydrophilic and a hydrophobic domain, and that the two domains are folded almost independently of each other. An NADPH-cytochrome-P-450 reductase system composed of NADPH and detergent-solubilized NADPH-cytochrome-P-450 reductase readily reduced the ferric heme bound to the tryptic peptide, but failed to transfer the second electron required for rapid heme degradation, suggesting that the hydrophobic domain of heme oxygenase is important for receiving the second electron from the reductase. 相似文献
20.