共查询到20条相似文献,搜索用时 0 毫秒
1.
Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus 总被引:4,自引:0,他引:4
G Marino G Nitti M I Arnone G Sannia A Gambacorta M De Rosa 《The Journal of biological chemistry》1988,263(25):12305-12309
Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus, a thermoacidophilic organism isolated from an acidic hot spring (optimal growth conditions: 87 degrees C, pH 3.5) was purified to homogeneity. The enzyme is a dimer (Mr subunit = 53,000) showing microheterogeneity when submitted to chromatofocusing and/or isoelectric focusing analysis (two main bands having pI = 6.8 and 6.3 were observed). The N-terminal sequence (22 residues) does not show any homology with any stretch of known sequence of aspartate aminotransferases from animal and bacterial sources. The apoenzyme can be reconstituted with pyridoxamine 5'-phosphate and/or pyridoxal 5'-phosphate, each subunit binding 1 mol of coenzyme. The absorption maxima of the pyridoxamine and pyridoxal form are centered at 325 and 335 nm, respectively; the shape of the pyridoxal form band does not change with pH. The enzyme has an optimum temperature higher than 95 degrees C, and at 100 degrees C shows a half-inactivation time of 2 h. The above properties seem to be unique even for enzymes from extreme thermophiles (Daniel, R. M. (1986) in Protein Structure, Folding, and Design (Oxender, D. L., ed) pp. 291-296, Alan R. Liss, Inc., New York) and lead to the conclusion that aspartate aminotransferase from S. solfataricus is one of the most thermophilic and thermostable enzymes so far known. 相似文献
2.
Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus 总被引:4,自引:0,他引:4
V Consalvi R Chiaraluce L Politi A Gambacorta M De Rosa R Scandurra 《European journal of biochemistry》1991,196(2):459-467
An NAD(P)-dependent glutamate dehydrogenase was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus. The enzyme is a hexamer (subunit mass 45 kDa) which dissociates into lower states of association when submitted to gel filtration. Isoelectric focusing analysis of the purified enzyme showed a pI of 5.7 and occasionally revealed microheterogeneity. The enzyme is strictly specific for the natural substrates 2-oxoglutarate and L-glutamate, but is active with both NADH and NADPH. S. solfataricus glutamate dehydrogenase revealed a high degree of thermal stability (at 80 C the half-life was 15 h) which was strictly dependent on the protein concentration. Very high levels of glutamate dehydrogenase were found in this archaebacterium which suggests that the conversion of 2-oxoglutarate and ammonia to glutamate is of central importance to the nitrogen metabolism in this bacterium. 相似文献
3.
Summary A rapid procedure for plating the thermo-acidophilic archaebacterium Sulfolobus solfataricus using Gerlite as a gelling agent is reported. The technique uses a clear, single layer in which the colonies are grown. 相似文献
4.
L Birolo M I Arnone M V Cubellis G Andreotti G Nitti G Marino G Sannia 《Biochimica et biophysica acta》1991,1080(3):198-204
Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus binds pyridoxal 5' phosphate, via an aldimine bond, with Lys-241. This residue has been identified by reducing the enzyme in the pyridoxal form with sodium cyanoboro[3H]hydride and sequencing the specifically labeled peptic peptides. The amino acid sequence centered around the coenzyme binding site is highly conserved between thermophilic aspartate aminotransferases and differs from that found in mesophilic isoenzymes. An alignment of aspartate aminotransferase from Sulfolobus solfataricus with mesophilic isoenzymes, attempted in spite of the low degree of similarity, was confirmed by the correspondence between pyridoxal 5' phosphate binding residues. Using this alignment it was possible to insert the archaebacterial aspartate aminotransferase into a subclass, subclass I, of pyridoxal 5' phosphate binding enzymes comprising mesophilic aspartate aminotransferases, tyrosine aminotransferases and histidinol phosphate aminotransferases. These enzymes share 12 invariant amino acids most of which interact with the coenzyme or with the substrates. Some enzymes of subclass I and in particular aspartate aminotransferase from Sulfolobus solfataricus, lack a positively charged residue, corresponding to Arg-292, which in pig cytosolic aspartate aminotransferase interacts with the distal carboxylate of the substrates (and determines the specificity towards dicarboxylic acids). It was confirmed that aspartate aminotransferase from Sulfolobus solfataricus does not possess any arginine residue exposed to chemical modifications responsible for the binding of omega-carboxylate of the substrates. Furthermore, it has been found that aspartate aminotransferase from Sulfolobus solfataricus is fairly active when alanine is used as substrate and that this activity is not affected by the presence of formate. The KM value of the thermophilic aspartate aminotransferase towards alanine is at least one order of magnitude lower than that of the mesophilic analogue enzymes. 相似文献
5.
Properties of the elongation factor 1 alpha in the thermoacidophilic archaebacterium Sulfolobus solfataricus 总被引:1,自引:0,他引:1
M Masullo G Raimo A Parente A Gambacorta M De Rosa V Bocchini 《European journal of biochemistry》1991,199(3):529-537
The elongation factor 1 alpha (aEF-1 alpha) was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus by chromatographic procedures utilising DEAE-Sepharose, hydroxyapatite and FPLC on Mono S. The purified protein binds [3H]GDP at a 1:1 molar ratio and it is essential for poly(Phe) synthesis in vitro; it also binds GTP but not ATP. These findings indicate that aEF-1 alpha is the counterpart of the eubacterial elongation factor Tu (EF-Tu). Purified aEF-1 alpha is a monomeric protein with a relative molecular mass of 49,000 as determined by SDS/PAGE and by gel filtration on Sephadex G-100; its isoelectric point is 9.1. The overall amino acid composition did not reveal significant differences when compared with the amino acid composition of eubacterial EF-Tu from either Escherichia coli or Thermus thermophilus, of eukaryotic EF-1 alpha from Artemia salina or of archaebacterial EF-1 alpha from Methanococcus vannielii. The close similarities between the average hydrophobicity and the numbers of hydrogen-bond-forming or non-helix-forming residues suggest that common structural features exist among the factors compared. aEF-1 alpha shows remarkable thermophilic properties, as demonstrated by the rate of [3H]GDP binding which increases with temperature, reaching a maximum at 95 degrees C; it is also quite heat-resistant, since after a 6-h exposure at 60 degrees C and 87 degrees C the residual [3H]GDP-binding ability was still 90% and 54% of the control, respectively. The affinity of aEF-1 alpha for GDP and GTP was also evaluated. At 80 degrees C Ka' for GDP was about 30-fold higher than Ka' for GTP; at the same temperature Kd' for GDP was 1.7 microM and Kd' for GTP was 50 microM; these values were 300-fold and 100-fold higher, respectively, than those reported for E. coli EF-Tu at 30 degrees C; compared to the values at 0 degree C of EF-Tu from E. coli and T. thermophilus or EF-1 alpha from A. salina, pig liver and calf brain, smaller differences were observed with eukaryotic factors.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
6.
Total reconstitution of active large ribosomal subunits of the thermoacidophilic archaebacterium Sulfolobus solfataricus. 总被引:2,自引:2,他引:2
下载免费PDF全文

The large ribosomal subunit of the extremely thermoacidophilic archaebacterium Sulfolobus solfataricus has been reconstituted from the completely dissociated RNA and proteins by a two-step incubation procedure at high temperatures. Successful reconstitution requires a preliminary incubation of the ribosomal components for 45 min at 65 degrees C, followed by a second heat-treatment at 80 degrees C for 60 min. Structural reassembly depends upon high concentrations of K+ (300-400 mM) and Mg2+ (20-40 mM) ions. In addition, complete recovery of subunit function stringently requires the presence of a polyamine, thermine (or spermine). The reconstituted archaebacterial subunits are essentially indistinguishable from the native ones by a number of structural and functional criteria. 相似文献
7.
The gene (ppa) from the thermoacidophilic archaebacterium Thermoplasma acidophilum, encoding the cytoplasmic pyrophosphatase, has been cloned. Two degenerate oligonucleotide probes, synthesized according to the N-terminal amino acid sequence of the isolated protein, were used to screen subgenomic libraries. The DNA-derived amino acid sequence of the archaebacterial enzyme allows, for the first time, comparative studies of cytoplasmic pyrophosphatases to be extended to all three urkingdoms. The archaebacterial pyrophosphatase more closely resembles the eubacterial enzymes on the basis of sequence similarity and subunit size. The majority of amino acid residues considered to be essential for hydrolysis of pyrophosphate seem to have been conserved throughout evolution, as inferred from the results of an alignment of sequences from all three urkingdoms. 相似文献
8.
9.
Ribonuclease P is the endonuclease that removes the leader fragments from the 5'-ends of precursor tRNAs. The enzyme isolated from eubacteria contains a catalytic RNA subunit. RNAs also copurify with eukaryotic RNase P, although catalysis by those RNAs has not been demonstrated. This paper reports the isolation and characterization of ribonuclease P from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Archaebacteria are a primary evolutionary lineage, distinct from both eukaryotes and eubacteria. Ribonuclease P of S. solfataricus has reaction component requirements and a Km for substrate tRNA (2.5 X 10(-7) M) that are roughly similar to those reported for eubacterial and eukaryotic ribonuclease P. The temperature optimum for the reaction is 77 degrees C, reflecting the thermophilic character of the organism. The enzyme activity is not affected by treatment with micrococcal nuclease, suggesting that there is no RNA subunit or that it is protected from nuclease action. The density of the enzyme in cesium sulfate equilibrium density gradients is 1.27 g/ml, which is similar to that of protein. However, several RNAs between 200 and 400 nucleotides in size copurify with the enzyme activity on the density gradients, and one of them remains after micrococcal nuclease treatment. These properties of the S. solfataricus enzyme are compared with those of ribonuclease P from eukaryotes and eubacteria. 相似文献
10.
Hemmi H Ikejiri S Nakayama T Nishino T 《Biochemical and biophysical research communications》2003,305(3):586-591
Examination of the sequence of a hypothetical gene with an unknown function included in the carotenogenic gene cluster in the genome of a thermoacidophilic archaeon Sulfolobus solfataricus led to the prediction that the gene encodes a novel-type lycopene beta-cyclase, whose N- and C-terminal halves are homologous to the subunits of the bacterial heterodimeric enzymes. The recombinant expression of the gene in lycopene-producing Escherichia coli resulted in the accumulation of beta-carotene in the cells, which verifies the function of the gene. Homologues of the archaeal lycopene beta-cyclase from various organisms such as bacteria, archaea, and fungi have been reported. Although their primary structures are clearly specific to the biological taxa, a phylogenetic analysis revealed the unexpected complicity of the evolutional route of these enzymes. 相似文献
11.
A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius 总被引:3,自引:0,他引:3
A type II restriction endonuclease (SuaI) has been isolated from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. The enzyme is an isoschizomer of BspRI. It does not cut S. acidocaldarius DNA, as the recognition sequence GGCC in this DNA contains modified nucleotide(s). The enzyme is most active at 60-70 degrees C and is highly thermostable. 相似文献
12.
M I Arnone L Birolo M Giamberini M V Cubellis G Nitti G Sannia G Marino 《European journal of biochemistry》1992,204(3):1183-1189
The analysis of conformational transitions using limited proteolysis was carried out on a hyperthermophilic aspartate aminotransferase isolated from the archaebacterium Sulfolobus solfataricus, in comparison with pig cytosolic aspartate aminotransferase, a thoroughly studied mesophilic aminotransferase which shares about 15% similarity with the archaebacterial protein. Aspartate aminotransferase from S. solfataricus is cleaved at residue 28 by thermolysin and residues 32 and 33 by trypsin; analogously, pig heart cytosolic aspartate aminotransferase is cleaved at residues 19 and 25 [Iriarte, A., Hubert, E., Kraft, K. & Martinez-Carrion, M. (1984) J. Biol. Chem. 259, 723-728] by trypsin. In the case of aspartate aminotransferase from S. solfataricus, proteolytic cleavages also result in transaminase inactivation thus indicating that both enzymes, although evolutionarily distinct, possess a region involved in catalysis and well exposed to proteases which is similarly positioned in their primary structure. It has been reported that the binding of substrates induces a conformational transition in aspartate aminotransferases and protects the enzymes against proteolysis [Gehring, H. (1985) in Transaminases (Christen, P. & Metzler, D. E., eds) pp. 323-326, John Wiley & Sons, New York]. Aspartate aminotransferase from S. solfataricus is protected against proteolysis by substrates, but only at high temperatures (greater than 60 degrees C). To explain this behaviour, the kinetics of inactivation caused by thermolysin were measured in the temperature range 25-75 degrees C. The Arrhenius plot of the proteolytic kinetic constants measured in the absence of substrates is not rectilinear, while the same plot of the constants measured in the presence of substrates is a straight line. Limited proteolysis experiments suggest that aspartate aminotransferase from S. solfataricus undergoes a conformational transition induced by the binding of substrates. Another conformational transition which depends on temperature and occurs in the absence of substrates could explain the non-linear Arrhenius plot of the proteolytic kinetic constants. The latter conformational transition might also be related to the functioning of the archaebacterial aminotransferase since the Arrhenius plot of kcat is non-linear as well. 相似文献
13.
Dihydroxy-acid dehydratase (DHAD) is one of the key enzymes involved in the biosynthetic pathway of the branched chain amino acids. Although the enzyme has been purified and characterized in various mesophiles, including bacteria and eukarya, the biochemical properties of DHAD from hyperthermophilic archaea have not yet been reported. In this study we cloned, expressed in Escherichia coli, and purified a DHAD homologue from the thermoacidophilic archaeon Sulfolobus solfataricus, which grows optimally at 80 degrees C and pH 3. The recombinant S. solfataricus DHAD (rSso_DHAD) showed the highest activity on 2,3-dihydroxyisovalerate among 17 aldonic acids tested. Interestingly, this enzyme also displayed high activity toward d-gluconate and some other pentonic and hexonic sugar acids. The k(cat)/K(m) values were 140.3 mM(-1) s(-1) for 2,3-dihydroxyisovalerate and 20.0 mM(-1) s(-1) for d-gluconate, respectively. A possible evolutionary explanation for substrate promiscuity was provided through amino acid sequence alignments of DHADs and 6-phosphogluconate dehydratases from archaea, bacteria and eukarya. 相似文献
14.
The role of 5 S RNA within the large ribosomal subunit of the extremely thermophilic archaebacterium Sulfolobus solfataricus has been analysed by means of in vitro reconstitution procedures. It is shown that Sulfolobus 50 S subunits reconstituted in the absence of 5 S RNA are inactive in protein synthesis and lack 2-3 ribosomal proteins. Furthermore, it has been determined that in the course of the in vitro assembly process Sulfolobus 5 S RNA can be replaced by the correspondent RNA species of E.coli; Sulfolobus reconstituted particles containing the eubacterial 5 S molecule are stable and active in polypeptide synthesis at high temperatures. 相似文献
15.
To elucidate the phylogenic status of the archaebacterium and mechanisms of acidophily, membrane bound ATPase, cytochromes
and NADH dehydrogenase of a thermoacidophilic archaebacterium,Sulfolobus acidocaldarius, were studied. Typea cytochrome was found in the membrane. The organism was sensitive to cyanide and azide, and though cytochromec is lacking in this organism, these respiratory poisons inhibited a terminal oxidase, when assayed with cytochromec from other sources. NADH dehydrogenase was highly purified from the crude extract of the cells. The enzyme was able to transfer
electrons from NADH to caldariellaquinone, a unique benzothiophenequinone in the genusSulfolobus. Thus, the enzyme is a possible member of the respiratory chain. Membrane fraction contained two types of ATPase, one was
active at neutral pH and slightly activated by sulfate; the other was an acid apyrase and inhibited by sulfate. Typical characteristics
of F0F1ATPase could not be found in these enzymes. These results suggest that (1) the thermoacidophilic archaebacteria are phylogenically
distant from both eubacteria and eukaryotes, (2) the archaebacterial thermoacidophiles can be classified in a different subgroup
from methanogens and extreme halophiles, and (3) in spite of the aerobic nature of the organism, the energy yielding mechanisms
appear quite unique, when compared to those of other aerobes and mitochondria. 相似文献
16.
Purification and characterization of a heat-stable esterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. 总被引:4,自引:0,他引:4
下载免费PDF全文

A heat-stable esterase has been purified 1080-fold to electrophoretic homogeneity from Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium; 20% of the starting activity is recovered. The purified enzyme shows a specific activity of 158 units/mg, based on the hydrolysis of p-nitrophenyl acetate. The esterase hydrolyses short-chain p-nitrophenyl esters, aliphatic esters and triacylglycerols. It is strongly inhibited by paraoxon and phenylmethanesulphonyl fluoride, but only weakly by eserine. From sedimentation-equilibrium data and molecular sieving in polyacrylamide gels, the Mr of the esterase is estimated to be 117000-128000. SDS/polyacrylamide-gel electrophoresis reveals a single band of protein, of Mr 32000. The purified esterase crystallizes in the presence of poly(ethylene glycol) in short rods. The enzyme is inactivated only on prolonged storage at temperature above 90 degrees C. 相似文献
17.
Purification and properties of NADH dehydrogenase from a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius 总被引:3,自引:0,他引:3
An NADH dehydrogenase was purified to electrophoretical homogeneity from Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium optimally growing at pH 2-3 and 75 degrees C. A 2,100-fold purification was achieved. The purified enzyme is an acidic protein with an isoelectric point of 5.6 and a molecular weight of 95,000, consisting of two 50,000-dalton subunits. The enzyme showed an absorption spectrum characteristic of flavoproteins, with maxima at 272, 372, and 448 nm. The enzyme is highly thermostable, is specific for NADH as an electron donor, and is capable of using 2,6-dichlorophenolindophenol, ferricyanide, benzoquinone, and naphthoquinone as electron acceptors. Though at a low rate, caldariellaquinone, a unique and sole benzothiophenequinone in the genus Sulfolobus, was also reduced by the enzyme, suggesting that the enzyme is a possible member of the respiratory chain of the thermoacidophilic archaebacterium. 相似文献
18.
D A Prangishvili R P Vashakidze M G Chelidze D Z Chinchaladze N V Tsalkalamanidze 《Biokhimii?a (Moscow, Russia)》1987,52(6):1043-1050
A new restriction endonuclease SuaI was isolated from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. The enzyme is an isoschizomer of BspR1; it recognizes tetranucleotide GGCC and cleaves DNA in the center of this sequence. SuaI requires Mg2+, the optimal concentration being 6 mM. KCl at concentrations above 25 mM significantly inhibits the enzyme activity. The pH optimum lies within the range of 6--7 at 70 degrees C, the temperature optimum is at 70--75 degrees C. The enzyme is highly stable at temperatures up to 80 degrees C. DNA of S. acidocaldarius is not cleaved by the enzyme. 相似文献
19.
N Burlini P Magnani A Villa F Macchi P Tortora A Guerritore 《Biochimica et biophysica acta》1992,1122(3):283-292
A proteinase was purified to electrophoretic homogeneity from crude extracts of the thermoacidophilic archaebacterium Sulfolobus solfataricus. Molecular mass values assessed by SDS-PAGE and gel filtration were 54 and 118 kDa, respectively, which points to a dimeric structure of the molecule. An isoelectric point of 5.6 was also determined. The enzyme behaved as a chymotrypsin-like serine proteinase, as shown by the inhibitory effects exerted by phenylmethanesulfonyl fluoride, 3,4-dichloroisocoumarin, tosylphenylalaninechloromethyl ketone and chymostatin. Consistently with the inhibition pattern, the enzyme cleaved chromogenic substrates at the carboxyl side of aromatic or bulky aliphatic amino acids; however, it effectively attacked only a small number of such substrates, thus, displaying a specificity much narrower than and clearly different from that of chymotrypsin. This was confirmed by its inability to digest a set of natural substrate proteins, as well as insulin chains A and B; only after alkylation casein was degraded to some extent. Proteinase activity was significantly stimulated by Mn2+ which acted as a mixed-type nonessential activator. The enzyme also displayed a broad pH optimum in the range 6.5-8.0. Furthermore, it was completely stable up to 90 degrees C; above this temperature it underwent first-order thermal inactivation with half-lives ranging from 342 min (92 degrees C) to 7 min (101 degrees C). At 50 degrees C it could withstand 6 M urea and, to some extent, different organic solvents; however, at 95 degrees C it was extensively inactivated by all of these compounds. None of the chemical physical properties of the enzyme, including amino-acid analysis, provided evidence of a possible relation to other well-known microbial serine proteinases. 相似文献
20.
Purification and properties of an extreme thermostable glutamate dehydrogenase from the archaebacterium Sulfolobus solfataricus 总被引:1,自引:0,他引:1
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3.) of the extreme thermophilic archaebacterium Sulfolobus solfataricus was purified to homogeneity by (NH4)2SO4 fractionation, anion-exchange chromatography and affinity chromatography on 5'-AMP-Sepharose. The purified native enzyme had a Mr of about 270,000 and was shown to be a hexamer of subunit Mr of 44,000. It was active from 30 to 95 degrees C, with a maximum activity at 85 degrees C. No significant loss of enzyme activity could be detected, either after incubation of the purified enzyme at 90 degrees C for 60 min, or in the presence of 4 M urea or 0.1% SDS. The enzyme was catalytically active with both NADH and NADPH as coenzyme and was specific for 2-oxoglutarate and L-glutamate as substrates. With respect to coenzyme utilization the Sulfolobus solfataricus glutamate dehydrogenase resembled more closely the equivalent enzymes from eukaryotic organisms than those from eubacteria. 相似文献