共查询到20条相似文献,搜索用时 0 毫秒
1.
Jupp S Horridge M Iannone L Klein J Owen S Schanstra J Wolstencroft K Stevens R 《BMC bioinformatics》2012,13(Z1):S5
BACKGROUND: Ontologies are being developed for the life sciences to standardise the way we describe and interpret the wealth of data currently being generated. As more ontology based applications begin to emerge, tools are required that enable domain experts to contribute their knowledge to the growing pool of ontologies. There are many barriers that prevent domain experts engaging in the ontology development process and novel tools are needed to break down these barriers to engage a wider community of scientists. RESULTS: We present Populous, a tool for gathering content with which to construct an ontology. Domain experts need to add content, that is often repetitive in its form, but without having to tackle the underlying ontological representation. Populous presents users with a table based form in which columns are constrained to take values from particular ontologies. Populated tables are mapped to patterns that can then be used to automatically generate the ontology's content. These forms can be exported as spreadsheets, providing an interface that is much more familiar to many biologists. CONCLUSIONS: Populous's contribution is in the knowledge gathering stage of ontology development; it separates knowledge gathering from the conceptualisation and axiomatisation, as well as separating the user from the standard ontology authoring environments. Populous is by no means a replacement for standard ontology editing tools, but instead provides a useful platform for engaging a wider community of scientists in the mass production of ontology content. 相似文献
2.
The Open Biomedical Ontologies (OBO) format from the GO consortium is a very successful format for biomedical ontologies, including the Gene Ontology. But it lacks formal computational definitions for its constructs and tools, like DL reasoners, to facilitate ontology development/maintenance. We describe the OBO Converter, a Java tool to convert files from OBO format to Web Ontology Language (OWL) (and vice versa) that can also be used as a Protégé Tab plug-in. It uses the OBO to OWL mapping provided by the National Center for Biomedical Ontologies (NCBO) (a joint effort of OBO developers and OWL experts) and offers options to ease the task of saving/reading files in both formats. AVAILABILITY: bioontology.org/tools/oboinowl/obo_converter.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献
3.
4.
Hoehndorf R Dumontier M Oellrich A Wimalaratne S Rebholz-Schuhmann D Schofield P Gkoutos GV 《Bioinformatics (Oxford, England)》2011,27(7):1001-1008
MOTIVATION: Ontologies are essential in biomedical research due to their ability to semantically integrate content from different scientific databases and resources. Their application improves capabilities for querying and mining biological knowledge. An increasing number of ontologies is being developed for this purpose, and considerable effort is invested into formally defining them in order to represent their semantics explicitly. However, current biomedical ontologies do not facilitate data integration and interoperability yet, since reasoning over these ontologies is very complex and cannot be performed efficiently or is even impossible. We propose the use of less expressive subsets of ontology representation languages to enable efficient reasoning and achieve the goal of genuine interoperability between ontologies. RESULTS: We present and evaluate EL Vira, a framework that transforms OWL ontologies into the OWL EL subset, thereby enabling the use of tractable reasoning. We illustrate which OWL constructs and inferences are kept and lost following the conversion and demonstrate the performance gain of reasoning indicated by the significant reduction of processing time. We applied EL Vira to the open biomedical ontologies and provide a repository of ontologies resulting from this conversion. EL Vira creates a common layer of ontological interoperability that, for the first time, enables the creation of software solutions that can employ biomedical ontologies to perform inferences and answer complex queries to support scientific analyses. Availability and implementation: The EL Vira software is available from http://el-vira.googlecode.com and converted OBO ontologies and their mappings are available from http://bioonto.gen.cam.ac.uk/el-ont. 相似文献
5.
The information explosion in biology makes it difficult for researchers to stay abreast of current biomedical knowledge and to make sense of the massive amounts of online information. Ontologies--specifications of the entities, their attributes and relationships among the entities in a domain of discourse--are increasingly enabling biomedical researchers to accomplish these tasks. In fact, bio-ontologies are beginning to proliferate in step with accruing biological data. The myriad of ontologies being created enables researchers not only to solve some of the problems in handling the data explosion but also introduces new challenges. One of the key difficulties in realizing the full potential of ontologies in biomedical research is the isolation of various communities involved: some workers spend their career developing ontologies and ontology-related tools, while few researchers (biologists and physicians) know how ontologies can accelerate their research. The objective of this review is to give an overview of biomedical ontology in practical terms by providing a functional perspective--describing how bio-ontologies can and are being used. As biomedical scientists begin to recognize the many different ways ontologies enable biomedical research, they will drive the emergence of new computer applications that will help them exploit the wealth of research data now at their fingertips. 相似文献
6.
The display of ontological information has become a crucial factor over the last decade in systems biology. The possibility to compare different ontological systems in a single application has however not been answered with an appropriate application. OntoSlug is an easy to use application that tries to fill this need. OntoSlug has been developed for use in classroom settings and scientific laboratory environment. 相似文献
7.
8.
Alexander Martin Maria E Ochagavia Laya C Rabasa Jamilet Miranda Jorge Fernandez-de-Cossio Ricardo Bringas 《BMC bioinformatics》2010,11(1):91
Background
The increasing availability and diversity of omics data in the post-genomic era offers new perspectives in most areas of biomedical research. Graph-based biological networks models capture the topology of the functional relationships between molecular entities such as gene, protein and small compounds and provide a suitable framework for integrating and analyzing omics-data. The development of software tools capable of integrating data from different sources and to provide flexible methods to reconstruct, represent and analyze topological networks is an active field of research in bioinformatics. 相似文献9.
Besenbacher S Mailund T Westh-Nielsen L Pedersen CN 《Bioinformatics (Oxford, England)》2005,21(8):1711-1712
SUMMARY: We have developed a tool implementing an efficient algorithm for refined Buneman tree reconstruction. The algorithm--which has the same complexity as the neighbour-joining method and the (plain) Buneman tree construction--enables refined Buneman tree reconstruction on large taxa sets. AVAILABILITY: The source code for RBT, written in Java, is available under the GNU Public License (GPL) at http://www.birc.dk/Software/RBT CONTACT: besen@daimi.au.dk. 相似文献
10.
We have attempted modelling biological connectivity for a toad population in a floodplain in the combined framework of population dynamics and landscape ecology. We took advantage of the GIS package for establishing friction maps for the focal species by attributing to each habitat type a resistance index. This approach made it possible to draw migration zones around each pond the area and the shape of which depended on landscape structure. We included mortality from road traffic by assigning a virtual population to each pond. The resulting map shows the potentiality of such an approach in the assistance of landscape management. 相似文献
11.
Gkoutos GV Green EC Greenaway S Blake A Mallon AM Hancock JM 《Bioinformatics (Oxford, England)》2005,21(7):1257-1262
MOTIVATION: A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. RESULTS: CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches. 相似文献
12.
Summary. Plastids were acquired by different strategies. While in primary endosymbiosis a cyanobacterium was engulfed by a eukaryotic
cell and reduced to a plastid, secondarily evolved plastids trace back to an enslaved red or green alga. Nature's recent playground
in merging organisms together can be detected in dinoflagellates, which developed additional strategies to acquire their solar-powered
factory. Some dinoflagellates possess secondary plastids, other species temporarily use “stolen plastids” of different origin.
The highest degree of complexity is reached in dinoflagellates with chloroplasts originating from the uptake of a photosynthetic
symbiont with secondary plastids, a process termed tertiary endosymbiosis.
Received June 18, 2001 Accepted January 11, 2002 相似文献
13.
Understanding and characterizing the biochemical and evolutionary information within the wealth of protein sequence and structural data, particularly at functionally important sites, is very important. A comprehensive analysis of physico-chemical properties and evolutionary conservation patterns at the molecular and biological function level is expected to yield important clues for identifying similar sites in as-yet uncharacterized proteins. We present a library of protein functional templates (PFTs) designed to represent the compositional and evolutionary conservation patterns of functional sites at the molecular and biological function level. Subsequently we developed LIMACS (LInear MAtching of Conservation Scores), a software tool that uses the template library for the prediction of functionally important sites in a multiple sequence alignment, transferring the molecular function annotation from the most-similar functional site in the template library to a predicted site. 相似文献
14.
15.
Discovery and integration of data is important in many ecological studies, especially those that concern broad-scale ecological questions. Data discovery and integration are often difficult and time consuming tasks for researchers, which is due in part to the use of informal, ambiguous, and sometimes inconsistent terms for describing data content. Ontologies offer a solution to this problem by providing consistent definitions of ecological concepts that in turn can be used to annotate, relate, and search for data sets. However, unlike in molecular biology or biomedicine, few ontology development efforts exist within ecology. Ontology development often requires considerable expertise in ontology languages and development tools, which is often a barrier for ontology creation in ecology. In this paper we describe an approach for ontology creation that allows ecologists to use common spreadsheet tools to describe different aspects of an ontology. We present conventions for creating, relating, and constraining concepts through spreadsheets, and provide software tools for converting these ontologies into equivalent OWL-DL representations. We also consider inverse translations, i.e., to convert ontologies represented using OWL-DL into our spreadsheet format. Our approach allows large lists of terms to be easily related and organized into concept hierarchies, and generally provides a more intuitive and natural interface for ontology development by ecologists. 相似文献
16.
Gregg A Helt John W Nicol Ed Erwin Eric Blossom Steven G Blanchard Stephen A Chervitz Cyrus Harmon Ann E Loraine 《BMC bioinformatics》2009,10(1):266
Background
Visualization software can expose previously undiscovered patterns in genomic data and advance biological science. 相似文献17.
18.
Pharmacologic agents may exert their biological activity at the level of the cell membrane. Of particular interest is the anticancer agent adriamycin. This drug has previously been considered to act by intercalation with nuclear DNA, but recent evidence suggests the possibility that the cell surface membrane may represent an alternative target. To test this hypothesis, adriamycin was attached to insoluble supports, and conditions suggesting that the drug was actively cytotoxic without entering cells were demonstrated. 相似文献
19.
Srinivasasainagendra V Page GP Mehta T Coulibaly I Loraine AE 《Plant physiology》2008,147(3):1004-1016
CressExpress is a user-friendly, online, coexpression analysis tool for Arabidopsis (Arabidopsis thaliana) microarray expression data that computes patterns of correlated expression between user-entered query genes and the rest of the genes in the genome. Unlike other coexpression tools, CressExpress allows characterization of tissue-specific coexpression networks through user-driven filtering of input data based on sample tissue type. CressExpress also performs pathway-level coexpression analysis on each set of query genes, identifying and ranking genes based on their common connections with two or more query genes. This allows identification of novel candidates for involvement in common processes and functions represented by the query group. Users launch experiments using an easy-to-use Web-based interface and then receive the full complement of results, along with a record of tool settings and parameters, via an e-mail link to the CressExpress Web site. Data sets featured in CressExpress are strictly versioned and include expression data from MAS5, GCRMA, and RMA array processing algorithms. To demonstrate applications for CressExpress, we present coexpression analyses of cellulose synthase genes, indolic glucosinolate biosynthesis, and flowering. We show that subselecting sample types produces a richer network for genes involved in flowering in Arabidopsis. CressExpress provides direct access to expression values via an easy-to-use URL-based Web service, allowing users to determine quickly if their query genes are coexpressed with each other and likely to yield informative pathway-level coexpression results. The tool is available at http://www.cressexpress.org. 相似文献
20.
Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/ 相似文献