首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

The altered ultrastructure and composition of cuticular wax from ‘glossy Newhall’ (MT) fruits lead to its glossy phenotype.

Abstract

A novel mutant derived from the wild-type (WT) ‘Newhall’ navel orange (Citrus sinensis [L.] Osbeck cv. Newhall), named ‘glossy Newhall’ (MT), which produced much more glossy fruits that were easily distinguishable from the WT fruits was characterized in this report. The total wax loads of both WT and MT fruits varied considerably during the fruit development. The most abundant wax fraction of WT mature fruits was triterpenoids, followed by aldehydes, alkanes, fatty acids, primary alcohol and cholesterol. The total wax load in MT mature fruits was reduced by 44.2?% compared with WT. Except for the minor wax components of primary alcohol and cholesterol, the amounts of all major wax fractions in MT mature fruits were decreased in varying degrees. The major reduction occurred in aldehydes that decreased 96.4?% and alkanes that decreased 81.9?%, which was consistent with scanning electron micrographs of MT mature fruit surfaces that showed a severe loss of wax crystals. Hence, aldehydes and alkanes were suggested to be required for wax crystal formation in ‘Newhall’ navel orange fruits.  相似文献   

2.
3.
4.
5.
6.
Downregulation of RdDM during strawberry fruit ripening   总被引:1,自引:0,他引:1  

Background

Recently, DNA methylation was proposed to regulate fleshy fruit ripening. Fleshy fruits can be distinguished by their ripening process as climacteric fruits, such as tomatoes, or non-climacteric fruits, such as strawberries. Tomatoes undergo a global decrease in DNA methylation during ripening, due to increased expression of a DNA demethylase gene. The dynamics and biological relevance of DNA methylation during the ripening of non-climacteric fruits are unknown.

Results

Here, we generate single-base resolution maps of the DNA methylome in immature and ripe strawberry. We observe an overall loss of DNA methylation during strawberry fruit ripening. Thus, ripening-induced DNA hypomethylation occurs not only in climacteric fruit, but also in non-climacteric fruit. Application of a DNA methylation inhibitor causes an early ripening phenotype, suggesting that DNA hypomethylation is important for strawberry fruit ripening. The mechanisms underlying DNA hypomethylation during the ripening of tomato and strawberry are distinct. Unlike in tomatoes, DNA demethylase genes are not upregulated during the ripening of strawberries. Instead, genes involved in RNA-directed DNA methylation are downregulated during strawberry ripening. Further, ripening-induced DNA hypomethylation is associated with decreased siRNA levels, consistent with reduced RdDM activity. Therefore, we propose that a downregulation of RdDM contributes to DNA hypomethylation during strawberry ripening.

Conclusions

Our findings provide new insight into the DNA methylation dynamics during the ripening of non-climacteric fruit and suggest a novel function of RdDM in regulating an important process in plant development.
  相似文献   

7.
8.
9.
10.
Assessment of cultivated cherry germplasm in Iran by multivariate analysis   总被引:1,自引:0,他引:1  

Key message

This work is an important step in the conservation of genetic cherry resources, which showed distinctive and interesting agronomical characters. Also it introduces suitable genotypes for cultivation and breeding studies.

Abstract

The purpose of this study was to characterize cherry germplasm that is cultivated in Iran. Thirty-three morphopomological parameters were studied in this germplasm, consisting of 70 cherry genotypes (41 sweet cherry, 24 sour cherry and 5 duke cherry genotypes). A wide variation was found in blooming time, ripening time, fruit weight, fruit color, anthocyanin, total soluble solids (TSS), titratable acidity (TA), fruit dimensions and flesh firmness and stone size. There were close positive correlations between fruit weight and fruit dimensions, and between fruit weight and fruit stalk weight, fruit flesh firmness and cracking and also a negative correlation between pH and TA. Dendrogram gave a clear separation between the sour, duke and sweet cherry species and also showed existing intraspecific morphological variation. Based on fruit size and organoleptic properties, the sweet cherry genotypes ‘Siah-Mashhad’, ‘Takdaneh-Mashhad’, ‘Shabestar’, ‘Siah-Daneshkade’, ‘Ghazvin’ and ‘Droongezna’ are recommended for fresh consumption. Good fruit chemical composition and late-ripening time stands out genotypes ‘Dirres-Italia’, ‘Dirres-Pardis’, ‘Maremoot’, ‘Abardeh’ and ‘Rorshon’ and make them suitable for processing. Also, ‘Gilas46’ and ‘Gilas49’ were substantially late-ripening, a characteristic that makes these genotypes highly suitable for breeding studies in case of ripening time. Furthermore, sour cherries ‘Hashtgerd2’ and ‘Hashtgerd3’ and duke cherries ‘Pardis1’ and ‘Pardis3’ were the best genotypes. This work is an important step in the conservation of genetic cherry resources in Iran, which showed distinctive and interesting agronomical characters such as low susceptibility to fruit cracking, high levels of total soluble solids, early fruit maturity and high fruit quality.  相似文献   

11.
12.
β-glucosidase (BG) was believed to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA during plant growth and development. However, there is no genetic evidence available to indicate the role of genes during fruit ripening. Here, the expression patterns of three genes (VvBG1, VvBG2, and VvBG3) encoding β-glucosidase were analyzed during grape fruit development, and it was found that β-glucosidase activity increased in grape fruit in response to various stresses. Furthermore, to verify the function of β-glucosidase during fruit ripening, heterogeneous expression of the VvBG1 gene in strawberry fruit was validated, and the results showed that the VvBG1 over-expression increased β-glucosidase and promoted the fruit ripening process in strawberry. In addition, we found that ABA contents increased in the VvBG1 over-expression of strawberry fruit, which induced fruit anthocyanin, soluble solid accumulation, and fruit softening. Moreover, genes related to coloring (CHS, CHI, F3H, and UFGT), softening (PG1, PL1, and EXP1), and aroma (SAAT, and QR) were up-regulated. This work will elucidate the specific roles of VvBGs in the synthesis of ABA and provide some new insights into the ABA-controlled grape ripening mechanism.  相似文献   

13.
14.
15.
16.
17.
18.

Key message

The interaction of MuMADS1 and MuUBA in banana was reported, which will help us to understand the mechanism of the MADS-box gene in regulating banana fruit development and ripening.

Abstract

The ubiquitin-activating enzyme E1 gene fragment MuUBA was obtained from banana (Musa acuminata L.AAA) fruit by the yeast two-hybrid method using the banana MADS-box gene MuMADS1 as bait and 2-day post-harvest banana fruit cDNA library as prey. MuMADS1 interacted with MuUBA. The interaction of MuMADS1 and MuUBA in vivo was further proved by bimolecular fluorescence complementation assay. Real-time quantitative PCR evaluation of MuMADS1 and MuUBA expression patterns in banana showed that they are highly expressed in the ovule 4 stage, but present in low levels in the stem, which suggests a simultaneously differential expression action exists for both MuMADS1 and MuUBA in different tissues and developmental fruits. MuMADS1 and MuUBA expression was highly stimulated by exogenous ethylene and suppressed by 1-methylcyclopropene. These results indicated that MuMADS1 and MuUBA were co-regulated by ethylene and might play an important role in post-harvest banana fruit ripening.  相似文献   

19.
Carotenes are plant secondary metabolites that are important for human health. Additionally, carotenes influence fruit color, which is a major trait for breeding. We compared the expression and sequences of genes related to color phenotypes in tomato inbred lines that produce different colors of fleshy fruit. Up-regulation of CYC-B expression and higher amount of β-carotene content in fruit ripening stage and nucleotide variations in the 5′ region of the gene were detected in orange fruited inbred lines compared to the other lines. Our results indicated that there is a close relationship between the expression pattern of the CYC-B gene and the orange color of fleshy fruit. We identified 4 SNPs in the promoter region of CYC-B genes associated with the orange fruit color. Moreover, the segregation ratio and color phenotypes in an F2 generation further indicated that one of the detected SNPs were associated with the orange color in the tested inbred lines. Our study provides valuable information to breeders for marker-assisted selection to produce desirable tomato varieties with health benefits by varying carotenoid levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号